About: Estimating global arthropod species richness: refining probabilistic models using probability bounds analysis     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • A key challenge in the estimation of tropical arthropod species richness is the appropriate management of the large uncertainties associated with any model. Such uncertainties had largely been ignored until recently, when we attempted to account for uncertainty associated with model variables, using Monte Carlo analysis. This model is restricted by various assumptions. Here, we use a technique known as probability bounds analysis to assess the influence of assumptions about (1) distributional form and (2) dependencies between variables, and to construct probability bounds around the original model prediction distribution. The original Monte Carlo model yielded a median estimate of 6.1 million species, with a 90 % confidence interval of [3.6, 11.4]. Here we found that the probability bounds (p-bounds) surrounding this cumulative distribution were very broad, owing to uncertainties in distributional form and dependencies between variables. Replacing the implicit assumption of pure statistical independence between variables in the model with no dependency assumptions resulted in lower and upper p-bounds at 0.5 cumulative probability (i.e., at the median estimate) of 2.9-12.7 million. From here, replacing probability distributions with probability boxes, which represent classes of distributions, led to even wider bounds (2.4-20.0 million at 0.5 cumulative probability). Even the 100th percentile of the uppermost bound produced (i.e., the absolutely most conservative scenario) did not encompass the well-known hyper-estimate of 30 million species of tropical arthropods. This supports the lower estimates made by several authors over the last two decades.
  • A key challenge in the estimation of tropical arthropod species richness is the appropriate management of the large uncertainties associated with any model. Such uncertainties had largely been ignored until recently, when we attempted to account for uncertainty associated with model variables, using Monte Carlo analysis. This model is restricted by various assumptions. Here, we use a technique known as probability bounds analysis to assess the influence of assumptions about (1) distributional form and (2) dependencies between variables, and to construct probability bounds around the original model prediction distribution. The original Monte Carlo model yielded a median estimate of 6.1 million species, with a 90 % confidence interval of [3.6, 11.4]. Here we found that the probability bounds (p-bounds) surrounding this cumulative distribution were very broad, owing to uncertainties in distributional form and dependencies between variables. Replacing the implicit assumption of pure statistical independence between variables in the model with no dependency assumptions resulted in lower and upper p-bounds at 0.5 cumulative probability (i.e., at the median estimate) of 2.9-12.7 million. From here, replacing probability distributions with probability boxes, which represent classes of distributions, led to even wider bounds (2.4-20.0 million at 0.5 cumulative probability). Even the 100th percentile of the uppermost bound produced (i.e., the absolutely most conservative scenario) did not encompass the well-known hyper-estimate of 30 million species of tropical arthropods. This supports the lower estimates made by several authors over the last two decades. (en)
Title
  • Estimating global arthropod species richness: refining probabilistic models using probability bounds analysis
  • Estimating global arthropod species richness: refining probabilistic models using probability bounds analysis (en)
skos:prefLabel
  • Estimating global arthropod species richness: refining probabilistic models using probability bounds analysis
  • Estimating global arthropod species richness: refining probabilistic models using probability bounds analysis (en)
skos:notation
  • RIV/60076658:12310/13:43885124!RIV14-MSM-12310___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(EE.2.3.20.0064), P(GA206/09/0115), P(LH11008), Z(AV0Z50070508)
http://linked.open...iv/cisloPeriodika
  • 2
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 73245
http://linked.open...ai/riv/idVysledku
  • RIV/60076658:12310/13:43885124
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Uncertainty; Monte Carlo; Model; Host specificity (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [4F2C47989041]
http://linked.open...i/riv/nazevZdroje
  • Oecologia
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 171
http://linked.open...iv/tvurceVysledku
  • Novotný, Vojtěch
  • Miller, Scott E.
  • Basset, Yves
  • Weiblen, George D.
  • Benke, Kurt K.
  • Grimbacher, Peter S.
  • Hamilton, Andrew J.
  • Samuelson, G. Allan
  • Stork, Nigel E.
  • Waters, Edward K.
  • Yen, Jian D. L.
http://linked.open...ain/vavai/riv/wos
  • 000313800600006
http://linked.open...n/vavai/riv/zamer
issn
  • 0029-8549
number of pages
http://bibframe.org/vocab/doi
  • 10.1007/s00442-012-2434-5
http://localhost/t...ganizacniJednotka
  • 12310
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 48 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software