About: Projected Schur complement method for solving non-symmetric systems arising from a smooth fictitious domain approach     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Práce pojednává o rychlé metodě k řešení rozsáhlých algebraických sedlo-bodových soustav vznikajících z fiktivně oblastní formulace eliptických okrajových úloh. Nová metoda fiktivních oblastí je představena a analyzována. Okrajové podmínky jsou vynuceny pomocí kontrolních proměnných definovaných na pomocné hranici umístěné vně původní oblasti. Tento přístup podstatně zvyšuje řády konvergence, ikdyž výsledná algebraická soustava plynoucí z konečně prvkové diskretizace je obvykle nesymetrická. Představená metoda je založena na redukci na Schurův doplněk. Pokud je matice tuhosti singulární, redukovaná soustava může být opět formulována jako jiná sedlo-bodová soustava. Její modifikace pomocí ortogonálních projektorů může být efektivně řešena pomocí Krylovovi metody s projekcemi pro nesymetrické operátory. Z tohoto důvodu je odvozena varianta algoritmu BiCGSTAB s projekcemi ze standardní verze. Chování metody je ilustrováno na příkladech, ve kterých jsou počty iterací metody BICGSTAB redukovány pomocí mult (cs)
  • The paper deals with a fast method for solving large scale algebraic saddle-point systems arising from fictitious domain formulations of elliptic boundary value problems. A new variant of the fictitious domain approach is analyzed. Boundary conditions are enforced by control variables introduced on an auxiliary boundary located outside of the original domain. This approach has a significantly higher convergence rate, however the algebraic systems resulting from finite element discretizations are typically non-symmetric. The presented method is based on the Schur complement reduction. If the stiffness matrix is singular, the reduced system can be formulated again as another saddle-point problem. Its modification by orthogonal projectors leads to an equation that can be efficiently solved by a projected Krylov subspace method for non-symmetric operators. For this purpose, the projected variant of the BiCGSTAB algorithm is derived from the non-projected one. The behavior of the method is illustrated by e
  • The paper deals with a fast method for solving large scale algebraic saddle-point systems arising from fictitious domain formulations of elliptic boundary value problems. A new variant of the fictitious domain approach is analyzed. Boundary conditions are enforced by control variables introduced on an auxiliary boundary located outside of the original domain. This approach has a significantly higher convergence rate, however the algebraic systems resulting from finite element discretizations are typically non-symmetric. The presented method is based on the Schur complement reduction. If the stiffness matrix is singular, the reduced system can be formulated again as another saddle-point problem. Its modification by orthogonal projectors leads to an equation that can be efficiently solved by a projected Krylov subspace method for non-symmetric operators. For this purpose, the projected variant of the BiCGSTAB algorithm is derived from the non-projected one. The behavior of the method is illustrated by e (en)
Title
  • Projected Schur complement method for solving non-symmetric systems arising from a smooth fictitious domain approach
  • Metoda Schurova doplňku s projekcemi k řešení nesymetrických soustav vznikajících z hladké varianty metody fiktivních oblastí (cs)
  • Projected Schur complement method for solving non-symmetric systems arising from a smooth fictitious domain approach (en)
skos:prefLabel
  • Projected Schur complement method for solving non-symmetric systems arising from a smooth fictitious domain approach
  • Metoda Schurova doplňku s projekcemi k řešení nesymetrických soustav vznikajících z hladké varianty metody fiktivních oblastí (cs)
  • Projected Schur complement method for solving non-symmetric systems arising from a smooth fictitious domain approach (en)
skos:notation
  • RIV/61989100:27240/07:00014978!RIV08-AV0-27240___
http://linked.open.../vavai/riv/strany
  • 713-739
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1ET400300415), P(IAA1075402), Z(MSM6198910027)
http://linked.open...iv/cisloPeriodika
  • 9
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 445195
http://linked.open...ai/riv/idVysledku
  • RIV/61989100:27240/07:00014978
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Saddle-point system; fictitious domain method; Schur complement; orthogonal projectors; BiCGSTAB algorithm; multigrid. (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • GB - Spojené království Velké Británie a Severního Irska
http://linked.open...ontrolniKodProRIV
  • [4F512659ED17]
http://linked.open...i/riv/nazevZdroje
  • Numerical Linear Algebra with Applications
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 14
http://linked.open...iv/tvurceVysledku
  • Haslinger, Jaroslav
  • Kozubek, Tomáš
  • Kučera, Radek
  • Peichl, G.
http://linked.open...n/vavai/riv/zamer
issn
  • 1099-1506
number of pages
http://localhost/t...ganizacniJednotka
  • 27240
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software