About: On the approximate fixed point property in abstract spaces     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • Let X be a Hausdorff topological vector space, X * its topological dual and Z a subset of X *. In this paper, we establish some results concerning the sigma(X,Z)-approximate fixed point property for bounded, closed convex subsets C of X. Three major situations are studied. First, when Z is separable in the strong topology. Second, when X is a metrizable locally convex space and Z = X *, and third when X is not necessarily metrizable but admits a metrizable locally convex topology compatible with the duality. Our approach focuses on establishing the Frechet-Urysohn property for certain sets with regarding the sigma(X, Z)-topology. The support tools include the Brouwer's fixed point theorem and an analogous version of the classical Rosenthal's l_1-theorem for l_1-sequences in metrizable case. The results are novel and generalize previous work obtained by the authors in Banach spaces.
  • Let X be a Hausdorff topological vector space, X * its topological dual and Z a subset of X *. In this paper, we establish some results concerning the sigma(X,Z)-approximate fixed point property for bounded, closed convex subsets C of X. Three major situations are studied. First, when Z is separable in the strong topology. Second, when X is a metrizable locally convex space and Z = X *, and third when X is not necessarily metrizable but admits a metrizable locally convex topology compatible with the duality. Our approach focuses on establishing the Frechet-Urysohn property for certain sets with regarding the sigma(X, Z)-topology. The support tools include the Brouwer's fixed point theorem and an analogous version of the classical Rosenthal's l_1-theorem for l_1-sequences in metrizable case. The results are novel and generalize previous work obtained by the authors in Banach spaces. (en)
Title
  • On the approximate fixed point property in abstract spaces
  • On the approximate fixed point property in abstract spaces (en)
skos:prefLabel
  • On the approximate fixed point property in abstract spaces
  • On the approximate fixed point property in abstract spaces (en)
skos:notation
  • RIV/00216208:11320/12:10127319!RIV13-AV0-11320___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(IAA100190901), Z(MSM0021620839)
http://linked.open...iv/cisloPeriodika
  • 3-4
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 156353
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11320/12:10127319
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Frechet-Urysohn space; l_1 sequence; Metrizable locally convex space; Weak approximate fixed point property (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • DE - Spolková republika Německo
http://linked.open...ontrolniKodProRIV
  • [3A60EC954C37]
http://linked.open...i/riv/nazevZdroje
  • Mathematische Zeitschrift
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 271
http://linked.open...iv/tvurceVysledku
  • Kalenda, Ondřej
  • Barroso, C. S.
  • Lin, P-K
http://linked.open...ain/vavai/riv/wos
  • 000306342700035
http://linked.open...n/vavai/riv/zamer
issn
  • 0025-5874
number of pages
http://bibframe.org/vocab/doi
  • 10.1007/s00209-011-0915-6
http://localhost/t...ganizacniJednotka
  • 11320
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software