About: Numbers with integer expansion in the system with negative base     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • In this paper, we study representations of real numbers in the positional numeration system with negative basis, as introduced by Ito and Sadahiro. We focus on the set $\Z_{-\beta}$ of numbers whose representation uses only non-negative powers of $-\beta$, the so-called $(-\beta)$-integers. We describe the distances between consecutive elements of $\Z_{-\beta}$. In case that this set is non-trivial we associate to $\beta$ an infinite word $\boldsymbol{v}_{-\beta}$ over an (in general infinite) alphabet. The self-similarity of $\Z_{-\beta}$, i.e., the property $-\beta\Z_{-\beta}\subset \Z_{-\beta}$, allows us to find a morphism under which $\boldsymbol{v}_{-\beta}$ is invariant. On the example of two cubic irrational bases $\beta$ we demonstrate the difference between Rauzy fractals generated by $(-\beta)$-integers and by $\beta$-integers.
  • In this paper, we study representations of real numbers in the positional numeration system with negative basis, as introduced by Ito and Sadahiro. We focus on the set $\Z_{-\beta}$ of numbers whose representation uses only non-negative powers of $-\beta$, the so-called $(-\beta)$-integers. We describe the distances between consecutive elements of $\Z_{-\beta}$. In case that this set is non-trivial we associate to $\beta$ an infinite word $\boldsymbol{v}_{-\beta}$ over an (in general infinite) alphabet. The self-similarity of $\Z_{-\beta}$, i.e., the property $-\beta\Z_{-\beta}\subset \Z_{-\beta}$, allows us to find a morphism under which $\boldsymbol{v}_{-\beta}$ is invariant. On the example of two cubic irrational bases $\beta$ we demonstrate the difference between Rauzy fractals generated by $(-\beta)$-integers and by $\beta$-integers. (en)
Title
  • Numbers with integer expansion in the system with negative base
  • Numbers with integer expansion in the system with negative base (en)
skos:prefLabel
  • Numbers with integer expansion in the system with negative base
  • Numbers with integer expansion in the system with negative base (en)
skos:notation
  • RIV/68407700:21340/12:00186826!RIV13-GA0-21340___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA201/09/0584), P(LC06002), S, Z(MSM6840770039)
http://linked.open...iv/cisloPeriodika
  • 2
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 154963
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21340/12:00186826
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • numeration system; negative base; Pisot numbers; morphism (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • PL - Polská republika
http://linked.open...ontrolniKodProRIV
  • [EF5B755A6AE7]
http://linked.open...i/riv/nazevZdroje
  • Functiones et Approximatio, Commentarii Mathematici
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 47
http://linked.open...iv/tvurceVysledku
  • Ambrož, Petr
  • Dombek, Daniel
  • Masáková, Zuzana
  • Pelantová, Edita
http://linked.open...n/vavai/riv/zamer
issn
  • 0208-6573
number of pages
http://bibframe.org/vocab/doi
  • 10.7169/facm/2012.47.2.8
http://localhost/t...ganizacniJednotka
  • 21340
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software