Attributes | Values |
---|
rdf:type
| |
Description
| - In this paper, we study representations of real numbers in the positional numeration system with negative basis, as introduced by Ito and Sadahiro. We focus on the set $\Z_{-\beta}$ of numbers whose representation uses only non-negative powers of $-\beta$, the so-called $(-\beta)$-integers. We describe the distances between consecutive elements of $\Z_{-\beta}$. In case that this set is non-trivial we associate to $\beta$ an infinite word $\boldsymbol{v}_{-\beta}$ over an (in general infinite) alphabet. The self-similarity of $\Z_{-\beta}$, i.e., the property $-\beta\Z_{-\beta}\subset \Z_{-\beta}$, allows us to find a morphism under which $\boldsymbol{v}_{-\beta}$ is invariant. On the example of two cubic irrational bases $\beta$ we demonstrate the difference between Rauzy fractals generated by $(-\beta)$-integers and by $\beta$-integers.
- In this paper, we study representations of real numbers in the positional numeration system with negative basis, as introduced by Ito and Sadahiro. We focus on the set $\Z_{-\beta}$ of numbers whose representation uses only non-negative powers of $-\beta$, the so-called $(-\beta)$-integers. We describe the distances between consecutive elements of $\Z_{-\beta}$. In case that this set is non-trivial we associate to $\beta$ an infinite word $\boldsymbol{v}_{-\beta}$ over an (in general infinite) alphabet. The self-similarity of $\Z_{-\beta}$, i.e., the property $-\beta\Z_{-\beta}\subset \Z_{-\beta}$, allows us to find a morphism under which $\boldsymbol{v}_{-\beta}$ is invariant. On the example of two cubic irrational bases $\beta$ we demonstrate the difference between Rauzy fractals generated by $(-\beta)$-integers and by $\beta$-integers. (en)
|
Title
| - Numbers with integer expansion in the system with negative base
- Numbers with integer expansion in the system with negative base (en)
|
skos:prefLabel
| - Numbers with integer expansion in the system with negative base
- Numbers with integer expansion in the system with negative base (en)
|
skos:notation
| - RIV/68407700:21340/12:00186826!RIV13-GA0-21340___
|
http://linked.open...avai/predkladatel
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(GA201/09/0584), P(LC06002), S, Z(MSM6840770039)
|
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/68407700:21340/12:00186826
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - numeration system; negative base; Pisot numbers; morphism (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| - Functiones et Approximatio, Commentarii Mathematici
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Ambrož, Petr
- Dombek, Daniel
- Masáková, Zuzana
- Pelantová, Edita
|
http://linked.open...n/vavai/riv/zamer
| |
issn
| |
number of pages
| |
http://bibframe.org/vocab/doi
| |
http://localhost/t...ganizacniJednotka
| |
is http://linked.open...avai/riv/vysledek
of | |