Attributes | Values |
---|
rdf:type
| |
Description
| - Adaptation of a tracking procedure combined in a common way with a Kalman filter is formulated as an constrained optimization problem, where a trade-off between precision and loss-of-lock probability is explicitly taken into account. While the tracker is learned in order to minimize computational complexity during a learning stage, in a tracking stage the precision is maximized online under a constraint imposed by the loss-of-lock probability resulting in an optimal setting of the tracking procedure. We experimentally show that the proposed method converges to a steady solution in all variables. In contrast to a common Kalman filter based tracking, we achieve a significantly lower state covariance matrix. We also show, that if the covariance matrix is continuously updated, the method is able to adapt to a different situations. If a dynamic model is precise enough the tracker is allowed to spend a longer time with a fine motion estimation, however, if the motion gets saccadic, i.e. unpr
- Adaptation of a tracking procedure combined in a common way with a Kalman filter is formulated as an constrained optimization problem, where a trade-off between precision and loss-of-lock probability is explicitly taken into account. While the tracker is learned in order to minimize computational complexity during a learning stage, in a tracking stage the precision is maximized online under a constraint imposed by the loss-of-lock probability resulting in an optimal setting of the tracking procedure. We experimentally show that the proposed method converges to a steady solution in all variables. In contrast to a common Kalman filter based tracking, we achieve a significantly lower state covariance matrix. We also show, that if the covariance matrix is continuously updated, the method is able to adapt to a different situations. If a dynamic model is precise enough the tracker is allowed to spend a longer time with a fine motion estimation, however, if the motion gets saccadic, i.e. unpr (en)
- Adaptation of a tracking procedure combined in a common way with a Kalman filter is formulated as an constrained optimization problem, where a trade-off between precision and loss-of-lock probability is explicitly taken into account. While the tracker is learned in order to minimize computational complexity during a learning stage, in a tracking stage the precision is maximized online under a constraint imposed by the loss-of-lock probability resulting in an optimal setting of the tracking procedure. We experimentally show that the proposed method converges to a steady solution in all variables. In contrast to a common Kalman filter based tracking, we achieve a significantly lower state covariance matrix. We also show, that if the covariance matrix is continuously updated, the method is able to adapt to a different situations. If a dynamic model is precise enough the tracker is allowed to spend a longer time with a fine motion estimation, however, if the motion gets saccadic, i.e. unpr (cs)
|
Title
| - Adaptive parameter optimization for real-time tracking
- Adaptive parameter optimization for real-time tracking (en)
- Adaptive parameter optimization for real-time tracking (cs)
|
skos:prefLabel
| - Adaptive parameter optimization for real-time tracking
- Adaptive parameter optimization for real-time tracking (en)
- Adaptive parameter optimization for real-time tracking (cs)
|
skos:notation
| - RIV/68407700:21230/07:03135628!RIV08-GA0-21230___
|
http://linked.open.../vavai/riv/strany
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(1ET101210407), P(GA102/07/1317)
|
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/68407700:21230/07:03135628
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - motion estimation; real-time; tracking (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...v/mistoKonaniAkce
| |
http://linked.open...i/riv/mistoVydani
| |
http://linked.open...i/riv/nazevZdroje
| - NRTL 2007: Proceedings of workshop on Non-rigid registration and tracking through learning - ICCV
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...iv/tvurceVysledku
| - Matas, Jiří
- Svoboda, Tomáš
- Zimmermann, Karel
|
http://linked.open...vavai/riv/typAkce
| |
http://linked.open.../riv/zahajeniAkce
| |
number of pages
| |
http://purl.org/ne...btex#hasPublisher
| |
https://schema.org/isbn
| |
http://localhost/t...ganizacniJednotka
| |
is http://linked.open...avai/riv/vysledek
of | |