Attributes | Values |
---|
rdf:type
| |
Description
| - In the present paper the study of flows on n-manifolds in particular in dimension three, e.g., R-3, is motivated by the following question. Let A be a compact invariant set in a flow on X. Does every neighbourhood of A contain a movable invariant set M containing A? It is known that a stable solenoid in a flow on a 3-manifold has approximating periodic orbits in each of its neighbourhoods. The solenoid with the approximating orbits form a movable set, although the solenoid is not movable. Not many such examples are known. The main part of the paper consists of constructing an example of a set in R-3 that is not stable, is not a solenoid, and is approximated by Denjoy-like invariant sets instead of periodic orbits. As in the case of a solenoid, the constructed set is an inverse limit of its approximating sets. This gives a partial answer to the above question. (c) 2006 Elsevier B.V. All rights reserved.
- In the present paper the study of flows on n-manifolds in particular in dimension three, e.g., R-3, is motivated by the following question. Let A be a compact invariant set in a flow on X. Does every neighbourhood of A contain a movable invariant set M containing A? It is known that a stable solenoid in a flow on a 3-manifold has approximating periodic orbits in each of its neighbourhoods. The solenoid with the approximating orbits form a movable set, although the solenoid is not movable. Not many such examples are known. The main part of the paper consists of constructing an example of a set in R-3 that is not stable, is not a solenoid, and is approximated by Denjoy-like invariant sets instead of periodic orbits. As in the case of a solenoid, the constructed set is an inverse limit of its approximating sets. This gives a partial answer to the above question. (c) 2006 Elsevier B.V. All rights reserved. (en)
- Tento článek se zabývá toky na n-rozměrných varietách, zejména dimenze 3, tj. R-3. Je motivován následujícím problémem: Nechť A je kompaktní invariantní množina v toku na X. Obsahuje každé okolí A posuvnou invariantní množinu M obsahující A? Je známo, že stabilní solenoid v toku na trojrozměrné varietě má aproximující periodické orbity v každém svém okolí. Solenoid s těmito orbitami tvoří posuvnou množinu, přestože solenoid sám posuvný není. Podobných příkladů je známo velmi málo. Hlavní část článku tvoří příklad, v němž je sestrojena množina v R-3, která není stabilní, není to solenoid a je aproximována tzv. Denjoy-like invariantními množinami. Stejně jako v případě solenoidu je sestrojená množina inverzní limitou jejich aproximujících množin. (cs)
|
Title
| - An Example on Movable Approximations of a Minimal Set in a Continuous Flow
- An Example on Movable Approximations of a Minimal Set in a Continuous Flow (en)
- Příklad posuvných aproximací minimální množiny ve spojitém toku (cs)
|
skos:prefLabel
| - An Example on Movable Approximations of a Minimal Set in a Continuous Flow
- An Example on Movable Approximations of a Minimal Set in a Continuous Flow (en)
- Příklad posuvných aproximací minimální množiny ve spojitém toku (cs)
|
skos:notation
| - RIV/68407700:21230/07:03134293!RIV08-GA0-21230___
|
http://linked.open.../vavai/riv/strany
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| |
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/68407700:21230/07:03134293
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - Denjoy-like sets; continuous flows; minimal sets; movability; stability (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| - Topology and Its Applications
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| |
issn
| |
number of pages
| |
http://localhost/t...ganizacniJednotka
| |
is http://linked.open...avai/riv/vysledek
of | |