About: Iterative Algebras at Work     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Iterativni teorie, zavedene Calvinem Elgotem, formalizuji potencionalne nekonecne vypocty jako jednoznacna reseni rekursivnich rovnic. Jednim z hlavnich vysledku Elgota a jeho spoluautoru byl popis volne iterativni teorie jako teorie racionalnich stromu. Algebraicky dukaz tohoto faktu je velmi slozity. V nasi praci ukazujeme, ze pokud zacneme s iterativnimi algebrami, obdrzime volnou iterativni teorii jako teorii volnych iterativnich algeber. Nas koalgebraicky dukaz je znacne jendodussi nez puvodni algebraicky. Navic je nas vysledek obecnejsi: popisujeme volnou iterativni teorii pro libovolny finitarni endofunktor na libovolne lokalne konecne presentovane kategorii (cs)
  • Iterative theories, which were introduced by Calvin Elgot, formalise potentially infinite computations as unique solutions of recursive equations. One of the main results of Elgot and his coauthors is a description of a free iterative theory as the theory of all rational trees. Their algebraic proof of this fact is extremely complicated. In our paper we show that by starting with iterative algebras, that is, algebras admitting a unique solution of all systems of flat recursive equations, a free iterative theory is obtained as the theory of free iterative algebras. The (coalgebraic) proof we present is dramatically simpler than the original algebraic one. Despite this, our result is much more general: we describe a free iterative theory on any finitary endofunctor of every locally presentable category.
  • Iterative theories, which were introduced by Calvin Elgot, formalise potentially infinite computations as unique solutions of recursive equations. One of the main results of Elgot and his coauthors is a description of a free iterative theory as the theory of all rational trees. Their algebraic proof of this fact is extremely complicated. In our paper we show that by starting with iterative algebras, that is, algebras admitting a unique solution of all systems of flat recursive equations, a free iterative theory is obtained as the theory of free iterative algebras. The (coalgebraic) proof we present is dramatically simpler than the original algebraic one. Despite this, our result is much more general: we describe a free iterative theory on any finitary endofunctor of every locally presentable category. (en)
Title
  • Iterative Algebras at Work
  • Iterative Algebras at Work (en)
  • Iterativni algebry v plne sile (cs)
skos:prefLabel
  • Iterative Algebras at Work
  • Iterative Algebras at Work (en)
  • Iterativni algebry v plne sile (cs)
skos:notation
  • RIV/68407700:21230/06:03125206!RIV07-GA0-21230___
http://linked.open.../vavai/riv/strany
  • 1085;1131
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA201/06/0664)
http://linked.open...iv/cisloPeriodika
  • 16
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 480562
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21230/06:03125206
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Iterative Algebras (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • GB - Spojené království Velké Británie a Severního Irska
http://linked.open...ontrolniKodProRIV
  • [4761FC6519BE]
http://linked.open...i/riv/nazevZdroje
  • Mathematical Structures in Computer Science
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 2006
http://linked.open...iv/tvurceVysledku
  • Adámek, Jiří
  • Velebil, Jiří
  • Milius, S.
issn
  • 0960-1295
number of pages
http://localhost/t...ganizacniJednotka
  • 21230
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software