About: Learning Efficient Linear Predictors for Motion Estimation     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • A novel object representation for tracking is proposed. The tracked object is represented as a constellation of spatially localised linear predictors which are learned on a single training image. In the learning stage, sets of pixels whose intensities allow for optimal least square predictions of the transformations are selected as a support of the linear predictor. The approach comprises three contributions: learning object specific linear predictors, explicitly dealing with the predictor precision - computational complexity trade-off and selecting a view-specific set of predictors suitable for global object motion estimate. Robustness to occlusion is achieved by RANSAC procedure. The learned tracker is very efficient, achieving frame rate generally higher than 30 frames per second despite the Matlab implementation.
  • A novel object representation for tracking is proposed. The tracked object is represented as a constellation of spatially localised linear predictors which are learned on a single training image. In the learning stage, sets of pixels whose intensities allow for optimal least square predictions of the transformations are selected as a support of the linear predictor. The approach comprises three contributions: learning object specific linear predictors, explicitly dealing with the predictor precision - computational complexity trade-off and selecting a view-specific set of predictors suitable for global object motion estimate. Robustness to occlusion is achieved by RANSAC procedure. The learned tracker is very efficient, achieving frame rate generally higher than 30 frames per second despite the Matlab implementation. (en)
Title
  • Learning Efficient Linear Predictors for Motion Estimation
  • Learning Efficient Linear Predictors for Motion Estimation (en)
skos:prefLabel
  • Learning Efficient Linear Predictors for Motion Estimation
  • Learning Efficient Linear Predictors for Motion Estimation (en)
skos:notation
  • RIV/68407700:21230/06:00124649!RIV11-GA0-21230___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1ET101210407), P(GA201/06/1821), R, S, V
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 483046
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21230/06:00124649
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • motion estimation; real-time; tracking (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [662BB12951DC]
http://linked.open...v/mistoKonaniAkce
  • Madurai
http://linked.open...i/riv/mistoVydani
  • Berlin
http://linked.open...i/riv/nazevZdroje
  • Proceedings of 5th Indian Conference on Computer Vision, Graphics and Image Processing
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Matas, Jiří
  • Svoboda, Tomáš
  • Zimmermann, Karel
  • Hilton, A.
http://linked.open...vavai/riv/typAkce
http://linked.open...ain/vavai/riv/wos
  • 000244671700040
http://linked.open.../riv/zahajeniAkce
issn
  • 0302-9743
number of pages
http://purl.org/ne...btex#hasPublisher
  • Springer-Verlag
https://schema.org/isbn
  • 978-3-540-68301-8
http://localhost/t...ganizacniJednotka
  • 21230
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software