Attributes | Values |
---|
rdf:type
| |
Description
| - Studujeme epsilon-fréchetovskou diferencovatelnost lipschityovských funkcí na asplundovsky generovaných Banachových prostorech. Dokazujeme větu o střední hodnotě a její ekvivalent, formuli pro vyjádření Clarkeho subdiferenciálu a pomocí tohoto pojmu. Ukazujeme, že v řadě důkazů, kde se používá hluboká Preissova věta o diferencovatelnosti konvexních funkcí, se vystačí se slabším pojmem epsilon-fréchetovské diferencovatelnosti a příslušným lemmate Fabiana a Preisse pro tento pojem platící. Je to ukázáno na argumentech podaných Boreinem, Fitzpatrickem, Gillesem, Scifferem, Benyaminim a Lindenstraussem. (cs)
- We study the epsilon-Fréchet differentiability of Lipschitz functions on Asplund generated Banach spaces. We prove a mean valued theorem and its equivalent, a formula for Clarke´s subdifferential, in terms of this concept. We inspect proofs of several statements based on the deep Preiss´s theorem on Fréchet differentiability of Lipschitz functions and we recognize that it is enough to use a simpler lemma on epsilon-Fréchet differentiability due to Fabian and Preiss. We do so for generic differentiability results of Giles and Sciffer, for the existence of nearest points of Borwein and Fitzpatrick, etc. We also show that the epsilon-Fréchet differentiability is separably reducible.
- We study the epsilon-Fréchet differentiability of Lipschitz functions on Asplund generated Banach spaces. We prove a mean valued theorem and its equivalent, a formula for Clarke´s subdifferential, in terms of this concept. We inspect proofs of several statements based on the deep Preiss´s theorem on Fréchet differentiability of Lipschitz functions and we recognize that it is enough to use a simpler lemma on epsilon-Fréchet differentiability due to Fabian and Preiss. We do so for generic differentiability results of Giles and Sciffer, for the existence of nearest points of Borwein and Fitzpatrick, etc. We also show that the epsilon-Fréchet differentiability is separably reducible. (en)
|
Title
| - Epsilon-Fréchet Differentiability of Lipschitz Functions and Applications
- Epsilon-Fréchet Differentiability of Lipschitz Functions and Applications (en)
- Epsilon-fréchetovská diferencovatelnost lipschitzovských funkcí a aplikace (cs)
|
skos:prefLabel
| - Epsilon-Fréchet Differentiability of Lipschitz Functions and Applications
- Epsilon-Fréchet Differentiability of Lipschitz Functions and Applications (en)
- Epsilon-fréchetovská diferencovatelnost lipschitzovských funkcí a aplikace (cs)
|
skos:notation
| - RIV/67985840:_____/06:00079324!RIV07-AV0-67985840
|
http://linked.open.../vavai/riv/strany
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(GA201/04/0090), Z(AV0Z10190503)
|
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/67985840:_____/06:00079324
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - epsilon-Fréchet differentiability; mean value theorem; local epsilon-support (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| - DE - Spolková republika Německo
|
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| - Journal of Convex Analysis
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Fabian, Marián
- Wang, X.
- Loewen, P. D.
|
http://linked.open...n/vavai/riv/zamer
| |
issn
| |
number of pages
| |
is http://linked.open...avai/riv/vysledek
of | |