About: Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Semiempirical quantum mechanical methods with corrections for noncovalent interactions, namely dispersion and hydrogen bonds, reach an accuracy comparable to much more expensive methods while being applicable to very large systems (up to 10 000 atoms). These corrections have been successfully applied in computer-assisted drug design, where they significantly improve the correlation with the experimental data. Despite these successes, there are still several unresolved issues that limit the applicability of these methods. We introduce a new generation of both hydrogen-bonding and dispersion corrections that address these problems, make the method more robust, and improve its accuracy. The hydrogen-bonding correction has been completely redesigned and for the first time can be used for geometry optimization and molecular-dynamics simulations without any limitations, as it and its derivatives have a smooth potential energy surface. The form of this correction is simpler than its predecessors, while the accuracy has been improved. For the dispersion correction, we adopt the latest developments in DFT-D, using the D3 formalism by Grimme. The new corrections have been parametrized on a large set of benchmark data including nonequilibrium geometries, the S66x8 data set. As a result, the newly developed D3H4 correction can accurately describe a wider range of interactions. We have parametrized this correction for the PM6, RM1, OM3, PM3, AM1, and SCC-DFTB methods.
  • Semiempirical quantum mechanical methods with corrections for noncovalent interactions, namely dispersion and hydrogen bonds, reach an accuracy comparable to much more expensive methods while being applicable to very large systems (up to 10 000 atoms). These corrections have been successfully applied in computer-assisted drug design, where they significantly improve the correlation with the experimental data. Despite these successes, there are still several unresolved issues that limit the applicability of these methods. We introduce a new generation of both hydrogen-bonding and dispersion corrections that address these problems, make the method more robust, and improve its accuracy. The hydrogen-bonding correction has been completely redesigned and for the first time can be used for geometry optimization and molecular-dynamics simulations without any limitations, as it and its derivatives have a smooth potential energy surface. The form of this correction is simpler than its predecessors, while the accuracy has been improved. For the dispersion correction, we adopt the latest developments in DFT-D, using the D3 formalism by Grimme. The new corrections have been parametrized on a large set of benchmark data including nonequilibrium geometries, the S66x8 data set. As a result, the newly developed D3H4 correction can accurately describe a wider range of interactions. We have parametrized this correction for the PM6, RM1, OM3, PM3, AM1, and SCC-DFTB methods. (en)
Title
  • Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods
  • Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods (en)
skos:prefLabel
  • Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods
  • Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods (en)
skos:notation
  • RIV/61989592:15310/12:33142577!RIV13-MSM-15310___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(ED2.1.00/03.0058), Z(AV0Z40550506), Z(MSM6198959216)
http://linked.open...iv/cisloPeriodika
  • 1
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 121166
http://linked.open...ai/riv/idVysledku
  • RIV/61989592:15310/12:33142577
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • interaction energies; base-pairs; noncovalent complexes; tight-binding method (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [5AC76496DE66]
http://linked.open...i/riv/nazevZdroje
  • Journal of Chemical Theory and Computation
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 8
http://linked.open...iv/tvurceVysledku
  • Hobza, Pavel
  • Řezáč, Jan
http://linked.open...ain/vavai/riv/wos
  • 000298908500016
http://linked.open...n/vavai/riv/zamer
issn
  • 1549-9618
number of pages
http://bibframe.org/vocab/doi
  • 10.1021/ct200751e
http://localhost/t...ganizacniJednotka
  • 15310
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software