Attributes | Values |
---|
rdf:type
| |
Description
| - Many phenomena coming from the biology, economy, engineering are modeled using discrete dynamical systems. The concept of backward orbit is an essential concept for understanding the dynamics of the system. In the literature various definitions of the concept of the alpha–limit point (respectively set) have been historically used. The main aim of the paper is to compare the three definitions of the alpha limit set. We prove valid relationships and give relevant counterexamples. Moreover, we find a dynamical system (X,f) such that for any point x in X: (1) its alpha limit set equals to X, (2) there is a complete negative trajectory of x whose alpha limit set is equal to a fixed point, (3) there is a complete negative trajectory of x whose alpha limit set is equal to X.
- Many phenomena coming from the biology, economy, engineering are modeled using discrete dynamical systems. The concept of backward orbit is an essential concept for understanding the dynamics of the system. In the literature various definitions of the concept of the alpha–limit point (respectively set) have been historically used. The main aim of the paper is to compare the three definitions of the alpha limit set. We prove valid relationships and give relevant counterexamples. Moreover, we find a dynamical system (X,f) such that for any point x in X: (1) its alpha limit set equals to X, (2) there is a complete negative trajectory of x whose alpha limit set is equal to a fixed point, (3) there is a complete negative trajectory of x whose alpha limit set is equal to X. (en)
|
Title
| - A note on the definition of alpha limit set
- A note on the definition of alpha limit set (en)
|
skos:prefLabel
| - A note on the definition of alpha limit set
- A note on the definition of alpha limit set (en)
|
skos:notation
| - RIV/61989100:27740/13:86087400!RIV14-GA0-27740___
|
http://linked.open...avai/predkladatel
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(ED1.1.00/02.0070), P(GAP201/10/0887), S, Z(MSM6198910027)
|
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/61989100:27740/13:86087400
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - complete negative trajectory; special alpha limit set; Alpha limit set (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| - Applied Mathematics and Information Sciences
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Balibrea, Francisco
- Lampart, Marek
- Garcia, Juan Luise
|
http://linked.open...ain/vavai/riv/wos
| |
http://linked.open...n/vavai/riv/zamer
| |
issn
| |
number of pages
| |
http://bibframe.org/vocab/doi
| |
http://localhost/t...ganizacniJednotka
| |