Attributes | Values |
---|
rdf:type
| |
Description
| - Several variants of the Particle Swarm Optimization (PSO) algorithm have been proposed in recent past to tackle the multi-objective optimization problems based on the concept of Pareto optimality. Although a plethora of significant research articles have so far been published on analysis of the stability and convergence properties of PSO as a single-objective optimizer, till date, to the best of our knowledge, no such analysis exists for the multi-objective PSO (MOPSO) algorithms. This paper presents a first, simple analysis of the general Pareto-based MOPSO and finds conditions on its most important control parameters (the inertia factor and acceleration coefficients) that control the convergence behavior of the algorithm to the Pareto front in the objective function space. Limited simulation supports have also been provided to substantiate the theoretical derivations.
- Several variants of the Particle Swarm Optimization (PSO) algorithm have been proposed in recent past to tackle the multi-objective optimization problems based on the concept of Pareto optimality. Although a plethora of significant research articles have so far been published on analysis of the stability and convergence properties of PSO as a single-objective optimizer, till date, to the best of our knowledge, no such analysis exists for the multi-objective PSO (MOPSO) algorithms. This paper presents a first, simple analysis of the general Pareto-based MOPSO and finds conditions on its most important control parameters (the inertia factor and acceleration coefficients) that control the convergence behavior of the algorithm to the Pareto front in the objective function space. Limited simulation supports have also been provided to substantiate the theoretical derivations. (en)
|
Title
| - On Convergence of Multi-objective Particle Swarm Optimizers
- On Convergence of Multi-objective Particle Swarm Optimizers (en)
|
skos:prefLabel
| - On Convergence of Multi-objective Particle Swarm Optimizers
- On Convergence of Multi-objective Particle Swarm Optimizers (en)
|
skos:notation
| - RIV/61989100:27240/10:86076850!RIV11-MSM-27240___
|
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/61989100:27240/10:86076850
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - Optimizers; Swarm; Particle; Multi-objective; Convergence (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...v/mistoKonaniAkce
| |
http://linked.open...i/riv/mistoVydani
| |
http://linked.open...i/riv/nazevZdroje
| - IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC)
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...iv/tvurceVysledku
| - Abraham Padath, Ajith
- Das, Swagatam
- Snášel, Václav
- Chakraborty, Prithwish
- Roy, Gourab Ghosh
|
http://linked.open...vavai/riv/typAkce
| |
http://linked.open...ain/vavai/riv/wos
| |
http://linked.open.../riv/zahajeniAkce
| |
http://linked.open...n/vavai/riv/zamer
| |
number of pages
| |
http://purl.org/ne...btex#hasPublisher
| - IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA
|
https://schema.org/isbn
| |
http://localhost/t...ganizacniJednotka
| |
is http://linked.open...avai/riv/vysledek
of | |