About: Local nonlinear filters with the second-order accuracy for neural network parameter estimation     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Odhad parametrů perceptronové sítě lokálními nelineárním filtračními metodami je zkoumán. Je porovnávána přesnost a rychlost rozšířeného Kalmanova filtru s filtrem druhého řádu a transformačním filtrem. Je ukázáno, že transformační filtr je při odhadu parametrů perceptronové sítě výrazně rychlejší než transformační filtr. (cs)
  • This paper concentrates on parameter estimation of multi-layer perceptron network by nonlinear filtering methods. Whereas the EKF is using pproximation by the first order Taylor series expansion, the UKF estimates the parameters numerically by using a set of deterministically chosen points having higher degree of accuracy than the EKF without need to compute the derivatives of the function describing the network. Comparable accuracy as by UKF could be obtained by the truncated second-order filter (TSF). TSF has not been used yet because it is considered as more computationally demanding due to need of evaluation the matrix of second order derivatives. This paper points out, that the SKF is faster than the UKF in parameter estimation of MLP network thanks to a special form of the matrix of the second order derivatives. The evaluation of estimation quality and computational demands are demonstrated by a numerical example.
  • This paper concentrates on parameter estimation of multi-layer perceptron network by nonlinear filtering methods. Whereas the EKF is using pproximation by the first order Taylor series expansion, the UKF estimates the parameters numerically by using a set of deterministically chosen points having higher degree of accuracy than the EKF without need to compute the derivatives of the function describing the network. Comparable accuracy as by UKF could be obtained by the truncated second-order filter (TSF). TSF has not been used yet because it is considered as more computationally demanding due to need of evaluation the matrix of second order derivatives. This paper points out, that the SKF is faster than the UKF in parameter estimation of MLP network thanks to a special form of the matrix of the second order derivatives. The evaluation of estimation quality and computational demands are demonstrated by a numerical example. (en)
Title
  • Local nonlinear filters with the second-order accuracy for neural network parameter estimation
  • Odhad parametrů neuronové sítě filtry druhého řádu (cs)
  • Local nonlinear filters with the second-order accuracy for neural network parameter estimation (en)
skos:prefLabel
  • Local nonlinear filters with the second-order accuracy for neural network parameter estimation
  • Odhad parametrů neuronové sítě filtry druhého řádu (cs)
  • Local nonlinear filters with the second-order accuracy for neural network parameter estimation (en)
skos:notation
  • RIV/49777513:23520/06:00000015!RIV07-GA0-23520___
http://linked.open.../vavai/riv/strany
  • 165-168
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA102/05/2075), P(GP102/06/P202)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 483502
http://linked.open...ai/riv/idVysledku
  • RIV/49777513:23520/06:00000015
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Parameter estimation; local filters; accuracy; multi-layer perceptron network (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [EA15A043BD62]
http://linked.open...v/mistoKonaniAkce
  • Rožnov pod Radhoštěm
http://linked.open...i/riv/mistoVydani
  • Ostrava
http://linked.open...i/riv/nazevZdroje
  • Proceedings of 7th International Carpathian control conference
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Hering, Pavel
  • Šimandl, Miroslav
  • Král, Ladislav
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://purl.org/ne...btex#hasPublisher
  • Vysoká škola báňská - Technická univerzita Ostrava
https://schema.org/isbn
  • 80-248-1066-2
http://localhost/t...ganizacniJednotka
  • 23520
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software