About: A Novel Multi-Objective Self-Organizing Migrating Algorithm     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • In the paper, a novel stochastic Multi-Objective Self Organizing Migrating Algorithm (MOSOMA) is introduced. For the search of optima, MOSOMA employs a migration technique used in a single-objective Self Organizing Migrating Algorithm (SOMA). In order to obtain a uniform distribution of Pareto optimal solutions, a novel technique considering Euclidian distances among solutions is introduced. MOSOMA performance was tested on benchmark problems and selected electromagnetic structures. MOSOMA performance was compared with the performance of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). MOSOMA excels in the uniform distribution of solutions and their completeness.
  • In the paper, a novel stochastic Multi-Objective Self Organizing Migrating Algorithm (MOSOMA) is introduced. For the search of optima, MOSOMA employs a migration technique used in a single-objective Self Organizing Migrating Algorithm (SOMA). In order to obtain a uniform distribution of Pareto optimal solutions, a novel technique considering Euclidian distances among solutions is introduced. MOSOMA performance was tested on benchmark problems and selected electromagnetic structures. MOSOMA performance was compared with the performance of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). MOSOMA excels in the uniform distribution of solutions and their completeness. (en)
Title
  • A Novel Multi-Objective Self-Organizing Migrating Algorithm
  • A Novel Multi-Objective Self-Organizing Migrating Algorithm (en)
skos:prefLabel
  • A Novel Multi-Objective Self-Organizing Migrating Algorithm
  • A Novel Multi-Objective Self-Organizing Migrating Algorithm (en)
skos:notation
  • RIV/00216305:26220/11:PU94905!RIV13-MSM-26220___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(EE2.3.20.0007), P(GA102/07/0688), P(GD102/08/H018), S, Z(MSM0021630513)
http://linked.open...iv/cisloPeriodika
  • 4
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 184024
http://linked.open...ai/riv/idVysledku
  • RIV/00216305:26220/11:PU94905
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Multi-objective optimization, self-organizing migrating algorithm, Pareto front of optimal solutions. (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • CZ - Česká republika
http://linked.open...ontrolniKodProRIV
  • [F8817829CA2D]
http://linked.open...i/riv/nazevZdroje
  • Radioengineering
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 20
http://linked.open...iv/tvurceVysledku
  • Kadlec, Petr
  • Raida, Zbyněk
http://linked.open...ain/vavai/riv/wos
  • 000298636800013
http://linked.open...n/vavai/riv/zamer
issn
  • 1210-2512
number of pages
http://localhost/t...ganizacniJednotka
  • 26220
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 107 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software