About: Catalytic mechanism of the haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Haloalkane dehalogenases are bacterial enzymes capable of carbon-halogen bond cleavage in halogenated compounds. To obtain insight in the mechanism of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26 (LinB), we studied the steady-state and pre-steady-state kinetics of the conversion of the substrates 1-chlorohexane, chlorocyclohexane and bromocyclohexane. The results lead to a proposal of a minimal kinetic mechanism consisting of three main steps: (i) substrate binding, (ii) cleavage of the carbon-halogen bond with simultaneous formation of an alkyl-enzyme intermediate and (iii) hydrolysis of the alkyl-enzyme intermediate. Release of both products, halide and alcohol, is a fast process that was not included in reaction mechanism as a distinct step. Comparison of the kinetic mechanism of LinB with that of haloalkane dehalogenase DhlA from Xantobacter autotrophicus GJ10 and the haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 shows that the overall mechanisms are simi
  • Haloalkane dehalogenases are bacterial enzymes capable of carbon-halogen bond cleavage in halogenated compounds. To obtain insight in the mechanism of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26 (LinB), we studied the steady-state and pre-steady-state kinetics of the conversion of the substrates 1-chlorohexane, chlorocyclohexane and bromocyclohexane. The results lead to a proposal of a minimal kinetic mechanism consisting of three main steps: (i) substrate binding, (ii) cleavage of the carbon-halogen bond with simultaneous formation of an alkyl-enzyme intermediate and (iii) hydrolysis of the alkyl-enzyme intermediate. Release of both products, halide and alcohol, is a fast process that was not included in reaction mechanism as a distinct step. Comparison of the kinetic mechanism of LinB with that of haloalkane dehalogenase DhlA from Xantobacter autotrophicus GJ10 and the haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 shows that the overall mechanisms are simi (en)
  • Haloalkane dehalogenases are bacterial enzymes capable of carbon-halogen bond cleavage in halogenated compounds. To obtain insight in the mechanism of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26 (LinB), we studied the steady-state and pre-steady-state kinetics of the conversion of the substrates 1-chlorohexane, chlorocyclohexane and bromocyclohexane. The results lead to a proposal of a minimal kinetic mechanism consisting of three main steps: (i) substrate binding, (ii) cleavage of the carbon-halogen bond with simultaneous formation of an alkyl-enzyme intermediate and (iii) hydrolysis of the alkyl-enzyme intermediate. Release of both products, halide and alcohol, is a fast process that was not included in reaction mechanism as a distinct step. Comparison of the kinetic mechanism of LinB with that of haloalkane dehalogenase DhlA from Xantobacter autotrophicus GJ10 and the haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 shows that the overall mechanisms are simi (cs)
Title
  • Catalytic mechanism of the haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26
  • Catalytic mechanism of the haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26 (en)
  • Catalytic mechanism of the haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26 (cs)
skos:prefLabel
  • Catalytic mechanism of the haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26
  • Catalytic mechanism of the haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26 (en)
  • Catalytic mechanism of the haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26 (cs)
skos:notation
  • RIV/00216224:14310/03:00009155!RIV08-MSM-14310___
http://linked.open.../vavai/riv/strany
  • 45094-45100
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(LN00A016)
http://linked.open...iv/cisloPeriodika
  • 46
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 600444
http://linked.open...ai/riv/idVysledku
  • RIV/00216224:14310/03:00009155
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • ENZYME; KINETICS; MECHANISM; LINB; HALOALKANE DEHALOGENASE (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [0BEB7C39498D]
http://linked.open...i/riv/nazevZdroje
  • Journal of Biological Chemistry
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 278
http://linked.open...iv/tvurceVysledku
  • Chaloupková, Radka
  • Damborský, Jiří
  • Klvaňa, Martin
  • Nagata, Yuji
  • Prokop, Zbyněk
  • Monincová, Marta
  • Janssen, Dick B.
number of pages
http://localhost/t...ganizacniJednotka
  • 14310
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 48 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software