About: Self-motions of Stewart-Gough platforms     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • We describe a large class of self-motions of Stewart-Gough type parallel manipulators. The spherical image of those motions is a planar curve of degree six in Euler parameters. All points of a cubic in the plane of the platform have spherical trajectories. As the equation of the motion is rather general and complex, it is in general not possible to parametrize it. To visualize trajectories of a space motion, we need parametric expressions of all trajectories. As this is not possible, it would be natural to use approximate parametrization and other methods of computer geometry.
  • We describe a large class of self-motions of Stewart-Gough type parallel manipulators. The spherical image of those motions is a planar curve of degree six in Euler parameters. All points of a cubic in the plane of the platform have spherical trajectories. As the equation of the motion is rather general and complex, it is in general not possible to parametrize it. To visualize trajectories of a space motion, we need parametric expressions of all trajectories. As this is not possible, it would be natural to use approximate parametrization and other methods of computer geometry. (en)
  • Je popsána velká třída paralelních manipulátorů Stewart-Goughova typu, které mají vlastní pohyby. Sférický obraz takového pohybu je rovinná křivka, kterou nelze obecně parametrizovat. To znamená, že nelze znázornit trajektorie tohoto pohybu. Užití přibližné parametrizace a dalších metod počítačové geometrie vyřeší tento problém. (cs)
Title
  • Self-motions of Stewart-Gough platforms
  • Self-motions of Stewart-Gough platforms (en)
  • Vlastní pohyby Stewart-Goughových platform (cs)
skos:prefLabel
  • Self-motions of Stewart-Gough platforms
  • Self-motions of Stewart-Gough platforms (en)
  • Vlastní pohyby Stewart-Goughových platform (cs)
skos:notation
  • RIV/00216208:11320/08:00100725!RIV09-MSM-11320___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • Z(MSM0021620839)
http://linked.open...iv/cisloPeriodika
  • 9
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 394220
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11320/08:00100725
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Self-motions; Stewart-Gough; platforms (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [41D723D4E30F]
http://linked.open...i/riv/nazevZdroje
  • Computer Aided Geometric Design
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 25
http://linked.open...iv/tvurceVysledku
  • Karger, Adolf
http://linked.open...ain/vavai/riv/wos
  • 000261246200009
http://linked.open...n/vavai/riv/zamer
issn
  • 0167-8396
number of pages
http://localhost/t...ganizacniJednotka
  • 11320
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software