About: Comparison of displacement field predicted by 2D and 3D finite element modelling of shallow NATM tunnels in clays     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The 2D load-reduction method for simulating NATM tunnels using plane strain finite elements is evaluated in the paper by comparison with fully 3D simulations. Three real shallow tunnels in urban environment in different stiff clays were simulated. The soil behaviour was described by an advanced non-linear soil constitutive model based on the hypoplasticity theory. Time-dependent behaviour of shotcrete lining was considered in 3D simulations, whereas constant final stiffness was used in the plane strain analyses. The 2D analyses were thus controlled by a single parameter that accounts for 3D effects. It is shown that for an optimum value of this parameter, the displacement field predicted by the 2D method agrees well with the 3D simulations. In some cases only, a discrepancy was observed in the close vicinity of the tunnel. The controlling parameter was, however, found to be dependent on the problem simulated (for the same material) and also on the material properties (for the same tunnelling problem). Considering the material properties, the shear modulus at very small strain was found to be more influential than the shear modulus at large strain. The initial K0 stress state did not influence the controlling parameter substantially.
  • The 2D load-reduction method for simulating NATM tunnels using plane strain finite elements is evaluated in the paper by comparison with fully 3D simulations. Three real shallow tunnels in urban environment in different stiff clays were simulated. The soil behaviour was described by an advanced non-linear soil constitutive model based on the hypoplasticity theory. Time-dependent behaviour of shotcrete lining was considered in 3D simulations, whereas constant final stiffness was used in the plane strain analyses. The 2D analyses were thus controlled by a single parameter that accounts for 3D effects. It is shown that for an optimum value of this parameter, the displacement field predicted by the 2D method agrees well with the 3D simulations. In some cases only, a discrepancy was observed in the close vicinity of the tunnel. The controlling parameter was, however, found to be dependent on the problem simulated (for the same material) and also on the material properties (for the same tunnelling problem). Considering the material properties, the shear modulus at very small strain was found to be more influential than the shear modulus at large strain. The initial K0 stress state did not influence the controlling parameter substantially. (en)
Title
  • Comparison of displacement field predicted by 2D and 3D finite element modelling of shallow NATM tunnels in clays
  • Comparison of displacement field predicted by 2D and 3D finite element modelling of shallow NATM tunnels in clays (en)
skos:prefLabel
  • Comparison of displacement field predicted by 2D and 3D finite element modelling of shallow NATM tunnels in clays
  • Comparison of displacement field predicted by 2D and 3D finite element modelling of shallow NATM tunnels in clays (en)
skos:notation
  • RIV/00216208:11310/11:10107481!RIV12-GA0-11310___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA205/08/0732), P(GAP105/11/1884), S, Z(MSM0021620855)
http://linked.open...iv/cisloPeriodika
  • 2
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 191107
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11310/11:10107481
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Three dimensional computer graphics; Materials properties; Geologic models; Finite element method; Elastic moduli (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • DE - Spolková republika Německo
http://linked.open...ontrolniKodProRIV
  • [CEF6CCAF83BD]
http://linked.open...i/riv/nazevZdroje
  • Geotechnik
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 34
http://linked.open...iv/tvurceVysledku
  • Mašín, David
  • Svoboda, Tomáš
http://linked.open...n/vavai/riv/zamer
issn
  • 0172-6145
number of pages
http://bibframe.org/vocab/doi
  • 10.1002/gete.201000009
http://localhost/t...ganizacniJednotka
  • 11310
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software