About: Direct methods and an iteration approach in solving the gravimetric boundary value problem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
  • www.vugtk.cz/odis/sborniky/EGU2008-G2 a také na pecny.asu.cas.cz/EGU2008-G2
Description
  • In the paper the gravimetric boundary value problem is discussed in terms of the so-called weak solution. The approach follows principles of variational methods and leads to Galerkin’s approximations. However, an oblique derivative in the boundary condition and the need for a numerical integration over the whole and complicated surface of the Earth make the numerical interpretation of the solution extremely demanding. An alternative is considered. It reduces the demands by means of successive approximations. Step by step they make it possible to account for effects caused by the obliqueness of the derivative in the boundary condition and by the departure of the boundary from a more regular surface, a sphere in particular. In consequence an approximation to Galerkin’s matrix can be used, which is an advantage. The convergence of the process is investigated and also examined numerically. The discussion is added extensive numerical simulations using gravity data derived from the EGM96.
  • In the paper the gravimetric boundary value problem is discussed in terms of the so-called weak solution. The approach follows principles of variational methods and leads to Galerkin’s approximations. However, an oblique derivative in the boundary condition and the need for a numerical integration over the whole and complicated surface of the Earth make the numerical interpretation of the solution extremely demanding. An alternative is considered. It reduces the demands by means of successive approximations. Step by step they make it possible to account for effects caused by the obliqueness of the derivative in the boundary condition and by the departure of the boundary from a more regular surface, a sphere in particular. In consequence an approximation to Galerkin’s matrix can be used, which is an advantage. The convergence of the process is investigated and also examined numerically. The discussion is added extensive numerical simulations using gravity data derived from the EGM96. (en)
  • V článku je ve smyslu tzv. slabého řešení diskutována gravimetrická okrajová úloha. Postup sleduje principy variačních metod a vede ke Galerkinovým aproximacím. Šikmost derivace v okrajové podmínce a potřeba numerické integrace přes celý a komplikovaný povrch Země však činí numerickou interpretaci řešení velmi náročnou. Uvažována je alternativa. Nároky redukuje pomocí postupných aproximací. Krok za krokem umožňuje vzít v úvahu vliv šikmosti derivace v okrajové podmínce a odklon hranice od regulárnějších ploch, zejména koule. V důsledku lze použít aproximativní Galerkinovi matice, což je výhodou. Konvergence procesu je studována a také ověřena numericky. Diskuse je doplněna rozsáhlými numerickými simulacemi s využitím tíhových dat odvozených z EGM96. (cs)
Title
  • Direct methods and an iteration approach in solving the gravimetric boundary value problem
  • Přímé metody a iterační přístup k řešení geodetického okrajového problému (cs)
  • Direct methods and an iteration approach in solving the gravimetric boundary value problem (en)
skos:prefLabel
  • Direct methods and an iteration approach in solving the gravimetric boundary value problem
  • Přímé metody a iterační přístup k řešení geodetického okrajového problému (cs)
  • Direct methods and an iteration approach in solving the gravimetric boundary value problem (en)
skos:notation
  • RIV/00025615:_____/08:#0001449!RIV09-CUZ-00025615
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA205/06/1330), Z(CUZ0002561501)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 363737
http://linked.open...ai/riv/idVysledku
  • RIV/00025615:_____/08:#0001449
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • modelling of the Earth's gravity field, geodetic boundary-value problems, variational methods, Galerkin's approximations, successive approximations (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...i/riv/kodPristupu
http://linked.open...ontrolniKodProRIV
  • [0A6F170844F3]
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Holota, Petr
  • Nesvadba, Otakar
http://linked.open...n/vavai/riv/zamer
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software