Attributes | Values |
---|
rdf:type
| |
rdfs:seeAlso
| - www.geology.osu.edu/~jekeli.1/iag-commission2/IUGG07-GS002.htm
|
Description
| - In the paper the numerical solution of the linear gravimetric boundary value problem is discussed. The problem is formulated in terms of the so-called weak solution and the approach follows principles of variational methods. It leads to Galerkin’s approximations. Radial basis functions were used for this purpose. The reproducing kernel proved to be very suitable for constructing systems of these functions. The boundary of the solution domain is the surface of the Earth. In order to reduce the demands associated with the computation of the elements in the matrix of Galerkin’s system an approximation matrix was used. The simplification is then compensated by means of successive approximations. The successive approximations express the topography effects as well as effects caused by the obliqueness of the derivative in the boundary condition. The discussion is added extensive numerical simulations using gravity data derived from the EGM96.
- In the paper the numerical solution of the linear gravimetric boundary value problem is discussed. The problem is formulated in terms of the so-called weak solution and the approach follows principles of variational methods. It leads to Galerkin’s approximations. Radial basis functions were used for this purpose. The reproducing kernel proved to be very suitable for constructing systems of these functions. The boundary of the solution domain is the surface of the Earth. In order to reduce the demands associated with the computation of the elements in the matrix of Galerkin’s system an approximation matrix was used. The simplification is then compensated by means of successive approximations. The successive approximations express the topography effects as well as effects caused by the obliqueness of the derivative in the boundary condition. The discussion is added extensive numerical simulations using gravity data derived from the EGM96. (en)
- V článku je diskutováno řešení lineární gravimetrické okrajové úlohy. Úloha je formulována ve smyslu tzv. slabého řešení a postup sleduje principy variačních metod. Vede ke Galerkinovým aproximacím. Pro tento účel jsou použity radiální basické funkce. Reprodukční jádro se ukázalo velmi vhodným pro konstrukci systému těchto funkcí. Hranici oblasti řešení tvoři povrch Země. K redukci nároků spojených s výpočtem elementů matice Galerkinova systému je využita aproximativní matice. Zjednodušení je kompensováno pomocí postupných aproximací. Postupné aproximace vyjadřují vliv topografie a vliv šikmosti derivace v okrajové podmínce. Diskuse je doplněna rozsáhlými numerickými simulacemi využívajícími tíhové údaje odvozené z EGM96. (cs)
|
Title
| - Refinements of a numerical approach to direct methods in the determination of gravity potential from terrestrial data with iterations representing some small effects
- Refinements of a numerical approach to direct methods in the determination of gravity potential from terrestrial data with iterations representing some small effects (en)
- Zpřesnění numerického postupu pro přímé metody při určení tíhového potenciálu z pozemních údajů s iteracemi reprezentujícími malé efekty (cs)
|
skos:prefLabel
| - Refinements of a numerical approach to direct methods in the determination of gravity potential from terrestrial data with iterations representing some small effects
- Refinements of a numerical approach to direct methods in the determination of gravity potential from terrestrial data with iterations representing some small effects (en)
- Zpřesnění numerického postupu pro přímé metody při určení tíhového potenciálu z pozemních údajů s iteracemi reprezentujícími malé efekty (cs)
|
skos:notation
| - RIV/00025615:_____/07:#0001448!RIV09-CUZ-00025615
|
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(GA205/06/1330), Z(CUZ0002561501)
|
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/00025615:_____/07:#0001448
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - modelling of the Earth's gravity field, geodetic boundary-value problems, variational methods, Galerkin's approximations, successive approximations, high-performance computations (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...i/riv/kodPristupu
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...iv/tvurceVysledku
| - Holota, Petr
- Nesvadba, Otakar
|
http://linked.open...n/vavai/riv/zamer
| |