About: High-performance Implementation of Recurrent Neural Networks on Graphics Processing Units     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The evolutionary algorithms work with large sets of individuals. In our case these individuals represent neural networks. The speed of evaluation of the networks is the very crucial factor because it affects the overall speed of the whole evolution process. In this paper we describe our implementation of the fully recurrent neural networks on the general-purpose graphics processing units. We are using the nVidia CUDA technology to accelerate the simulation of the population of the networks. We have created package for Wolfram Mathematica that provides interface to our accelerated simulator from high-level programming environment. Our library supports the client-server architecture, so you can run the simulations on dedicated CUDA-enabled computational server and process the results of the simulations on your desktop using the TCP/IP communication protocol. In this paper we present the results of the speedup experiments.
  • The evolutionary algorithms work with large sets of individuals. In our case these individuals represent neural networks. The speed of evaluation of the networks is the very crucial factor because it affects the overall speed of the whole evolution process. In this paper we describe our implementation of the fully recurrent neural networks on the general-purpose graphics processing units. We are using the nVidia CUDA technology to accelerate the simulation of the population of the networks. We have created package for Wolfram Mathematica that provides interface to our accelerated simulator from high-level programming environment. Our library supports the client-server architecture, so you can run the simulations on dedicated CUDA-enabled computational server and process the results of the simulations on your desktop using the TCP/IP communication protocol. In this paper we present the results of the speedup experiments. (en)
Title
  • High-performance Implementation of Recurrent Neural Networks on Graphics Processing Units
  • High-performance Implementation of Recurrent Neural Networks on Graphics Processing Units (en)
skos:prefLabel
  • High-performance Implementation of Recurrent Neural Networks on Graphics Processing Units
  • High-performance Implementation of Recurrent Neural Networks on Graphics Processing Units (en)
skos:notation
  • RIV/68407700:21230/10:00177603!RIV11-MSM-21230___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • Z(MSM6840770012)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 261587
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21230/10:00177603
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Neural Networks; CUDA; Parallel Computing; Graphics Processing Units (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [3797BEC11682]
http://linked.open...v/mistoKonaniAkce
  • Praha
http://linked.open...i/riv/mistoVydani
  • Prague
http://linked.open...i/riv/nazevZdroje
  • Proceedings of the 7th EUROSIM Congress on Modelling and Simulation, Vol. 2: Full Papers
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Buk, Zdeněk
  • Šnorek, Miroslav
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • Department of Computer Science and Engineering, FEE, CTU in Prague
https://schema.org/isbn
  • 978-80-01-04589-3
http://localhost/t...ganizacniJednotka
  • 21230
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 91 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software