About: Unsupervised Learning of Holter ECG signals using HMM optimized by simulated annealing     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Není k dispozici (cs)
  • We present a unsupervised learning algorithm based on continuous Hidden Markov Models (HMM) to automatically classify Holter signals based on their morphology. Our proposed method automatically detect and separate the significant beats by means of hierarchical clustering scheme. Due to the convergence and numeric problems of a classical local optimization technique, we have implemented a novel approach for the global training of HMM by simulated annealing
  • We present a unsupervised learning algorithm based on continuous Hidden Markov Models (HMM) to automatically classify Holter signals based on their morphology. Our proposed method automatically detect and separate the significant beats by means of hierarchical clustering scheme. Due to the convergence and numeric problems of a classical local optimization technique, we have implemented a novel approach for the global training of HMM by simulated annealing (en)
Title
  • Není k dispozici (cs)
  • Unsupervised Learning of Holter ECG signals using HMM optimized by simulated annealing
  • Unsupervised Learning of Holter ECG signals using HMM optimized by simulated annealing (en)
skos:prefLabel
  • Není k dispozici (cs)
  • Unsupervised Learning of Holter ECG signals using HMM optimized by simulated annealing
  • Unsupervised Learning of Holter ECG signals using HMM optimized by simulated annealing (en)
skos:notation
  • RIV/68407700:21230/04:03099084!RIV/2005/MSM/212305/N
http://linked.open.../vavai/riv/strany
  • 60 ; 62
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • Z(MSM 210000012)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 591481
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21230/04:03099084
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • ECG; Hidden Markov Models; Simulated Annealing (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [4D0F3D4CD9C1]
http://linked.open...v/mistoKonaniAkce
  • Brno
http://linked.open...i/riv/mistoVydani
  • Brno
http://linked.open...i/riv/nazevZdroje
  • Analysis of Biomedical Signals and Images
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Lhotská, Lenka
  • Novák, Daniel
  • Al-ani, T.
  • Cuesta Frau, D.
  • Hamam, Y.
  • Mico, P.
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • VUTIUM Press
https://schema.org/isbn
  • 80-214-2633-0
http://localhost/t...ganizacniJednotka
  • 21230
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 22 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software