Attributes | Values |
---|
rdf:type
| |
rdfs:seeAlso
| |
Description
| - The magic of microwave (MW) heating technique, termed the Bunsen burner of the 21st century, has emerged as a valuable alternative in the synthesis of organic compounds, polymers, inorganic materials, and nanomaterials. Important innovations in MW-assisted chemistry now enable chemists to prepare catalytic materials or nanomaterials and desired organic molecules, selectively, in almost quantitative yields and with greater precision than using conventional heating. By controlling the specific MW parameters (temperature, pressure, and ramping of temperature) and choice of solvents, researchers can now move into the next generation of advanced nanomaterial design and development.Microwave-assisted chemical reactions are now well-established practices in the laboratory setting although some controversy lingers as to how MW irradiation is able to enhance or influence the outcome of chemical reactions. Much of the discussion has focused on whether the observed effects can, in all instances, be rationalized by purely thermal Arrhenius-based phenomena (thermal microwave effects), that is, the importance if the rapid heating and high bulk reaction temperatures that are achievable using MW dielectric heating in sealed reaction vessels, or whether these observations can be explained by so-called %22nonthermal%22 or %22specific microwave%22 effects. n recent years, innovative and significant advances have occurred in MW hardware development to help delineate MW effects, especially the use of silicon carbide (SiC) reaction vessels and the accurate measurement of temperature using fiber optic (FO) temperature probes. SiC reactors appear to be good alternatives to MW transparent borosilicate glass, because of their high microwave absorptivity, and as such they serve as valuable tools to demystify the claimed magical MW effects.
- The magic of microwave (MW) heating technique, termed the Bunsen burner of the 21st century, has emerged as a valuable alternative in the synthesis of organic compounds, polymers, inorganic materials, and nanomaterials. Important innovations in MW-assisted chemistry now enable chemists to prepare catalytic materials or nanomaterials and desired organic molecules, selectively, in almost quantitative yields and with greater precision than using conventional heating. By controlling the specific MW parameters (temperature, pressure, and ramping of temperature) and choice of solvents, researchers can now move into the next generation of advanced nanomaterial design and development.Microwave-assisted chemical reactions are now well-established practices in the laboratory setting although some controversy lingers as to how MW irradiation is able to enhance or influence the outcome of chemical reactions. Much of the discussion has focused on whether the observed effects can, in all instances, be rationalized by purely thermal Arrhenius-based phenomena (thermal microwave effects), that is, the importance if the rapid heating and high bulk reaction temperatures that are achievable using MW dielectric heating in sealed reaction vessels, or whether these observations can be explained by so-called %22nonthermal%22 or %22specific microwave%22 effects. n recent years, innovative and significant advances have occurred in MW hardware development to help delineate MW effects, especially the use of silicon carbide (SiC) reaction vessels and the accurate measurement of temperature using fiber optic (FO) temperature probes. SiC reactors appear to be good alternatives to MW transparent borosilicate glass, because of their high microwave absorptivity, and as such they serve as valuable tools to demystify the claimed magical MW effects. (en)
|
Title
| - Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics
- Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics (en)
|
skos:prefLabel
| - Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics
- Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics (en)
|
skos:notation
| - RIV/61989592:15310/14:33152511!RIV15-MSM-15310___
|
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(ED2.1.00/03.0058), P(EE2.3.30.0041)
|
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/61989592:15310/14:33152511
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - Organics; Nanomaterials; Assembly; Rapid; Applications; Synthetic; Chemistry; Microwave-Assisted (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| - US - Spojené státy americké
|
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| - Accounts of Chemical Research
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Zbořil, Radek
- Gawande, Manoj Bhanudas
- Varma, Rajender Singh
- Shelke, Sharad N
|
http://linked.open...ain/vavai/riv/wos
| |
issn
| |
number of pages
| |
http://bibframe.org/vocab/doi
| |
http://localhost/t...ganizacniJednotka
| |