About: Data parallel density-based genetic clustering on CUDA architecture     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Evolutionary clustering algorithms have been proven as a good ability to find clusters in data. Among their advantages belong the abilities to adapt to data and to determine the number of clusters automatically, thus requiring less a priori assumptions about analyzed objects than traditional clustering methods. Unfortunately, such a clustering by genetic algorithms and evolutionary algorithms in general suffers from high computational costs when it comes to recurrent fitness function evaluation. Computing on graphic processing units (GPUs) is a recent programming and development paradigm bringing high performance parallel computing closer to general audience. Modern general purpose GPUs are composed of tens to thousands of computational cores that can execute programs in parallel using the single instruction multiple data parallel processing approach. General purpose GPU programs need to be designed and implemented in a data parallel way and with respect to the architecture of target devices to fully utilize their high performance. This study presents a design, implementation, and evaluation of a data parallel genetic algorithm for density-based clustering. The algorithm was implemented and evaluated on the nVidia Compute Unified Device Architecture (CUDA) platform.
  • Evolutionary clustering algorithms have been proven as a good ability to find clusters in data. Among their advantages belong the abilities to adapt to data and to determine the number of clusters automatically, thus requiring less a priori assumptions about analyzed objects than traditional clustering methods. Unfortunately, such a clustering by genetic algorithms and evolutionary algorithms in general suffers from high computational costs when it comes to recurrent fitness function evaluation. Computing on graphic processing units (GPUs) is a recent programming and development paradigm bringing high performance parallel computing closer to general audience. Modern general purpose GPUs are composed of tens to thousands of computational cores that can execute programs in parallel using the single instruction multiple data parallel processing approach. General purpose GPU programs need to be designed and implemented in a data parallel way and with respect to the architecture of target devices to fully utilize their high performance. This study presents a design, implementation, and evaluation of a data parallel genetic algorithm for density-based clustering. The algorithm was implemented and evaluated on the nVidia Compute Unified Device Architecture (CUDA) platform. (en)
Title
  • Data parallel density-based genetic clustering on CUDA architecture
  • Data parallel density-based genetic clustering on CUDA architecture (en)
skos:prefLabel
  • Data parallel density-based genetic clustering on CUDA architecture
  • Data parallel density-based genetic clustering on CUDA architecture (en)
skos:notation
  • RIV/61989100:27740/14:86092261!RIV15-MSM-27740___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(ED1.1.00/02.0070), P(EE.2.3.20.0073), S
http://linked.open...iv/cisloPeriodika
  • 5
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 9807
http://linked.open...ai/riv/idVysledku
  • RIV/61989100:27740/14:86092261
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • SIMD; GPU; genetic clustering; genetic algorithms; density-based clustering; CUDA (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [F9D38E87EE78]
http://linked.open...i/riv/nazevZdroje
  • Concurrency Computation Practice and Experience
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 26
http://linked.open...iv/tvurceVysledku
  • Krömer, Pavel
  • Platoš, Jan
  • Snášel, Václav
http://linked.open...ain/vavai/riv/wos
  • 000332983700007
issn
  • 1532-0626
number of pages
http://bibframe.org/vocab/doi
  • 10.1002/cpe.3054
http://localhost/t...ganizacniJednotka
  • 27740
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software