Attributes | Values |
---|
rdf:type
| |
Description
| - Luczak and Pfender \cite{88} proved that if a graph $G$ is 3-connected and $K_{1,3}P_{11}$-free, then $G$ is hamiltonian. Moreover, Luczak et al. \cite{8} showed an example a non hamiltonian 3-connected $CP_{12}$-free graph. This result give a motivation to find an upper bound for the number $i$ such that every 3-connected $CZ_{i}$-free graph is hamiltonian. We will show that if a $G$ is 3-connected and $CZ_{6}$-free graph, then $G$ is hamiltonian. Pairs of connected graphs $X,Y$ such that a graph $G$ being 2-connected and $XY$-free implies $G$ is hamiltonian were characterized by Bedrossian. Using the closure concept for claw-free graphs, Ryj\' a\v cek simplified the characterization by showing that if considering the closure of $G$, the list in the Bedrossian's characterization can be reduced to one pair, namely, $K_{1,3},N_{1,1,1}$ (where $K_{i,j}$ is the complete bipartite graph, and $N_{i,j,k}$ is the graph obtained by identifying end vertices of three disjoint paths of l
- Luczak and Pfender \cite{88} proved that if a graph $G$ is 3-connected and $K_{1,3}P_{11}$-free, then $G$ is hamiltonian. Moreover, Luczak et al. \cite{8} showed an example a non hamiltonian 3-connected $CP_{12}$-free graph. This result give a motivation to find an upper bound for the number $i$ such that every 3-connected $CZ_{i}$-free graph is hamiltonian. We will show that if a $G$ is 3-connected and $CZ_{6}$-free graph, then $G$ is hamiltonian. Pairs of connected graphs $X,Y$ such that a graph $G$ being 2-connected and $XY$-free implies $G$ is hamiltonian were characterized by Bedrossian. Using the closure concept for claw-free graphs, Ryj\' a\v cek simplified the characterization by showing that if considering the closure of $G$, the list in the Bedrossian's characterization can be reduced to one pair, namely, $K_{1,3},N_{1,1,1}$ (where $K_{i,j}$ is the complete bipartite graph, and $N_{i,j,k}$ is the graph obtained by identifying end vertices of three disjoint paths of l (en)
|
Title
| - Hamiltonovske problémy v dědičných třidách grafů charakterizované zakázanými indukovanými podgrafy.
- Hamiltonovske problémy v dědičných třidách grafů charakterizované zakázanými indukovanými podgrafy. (en)
|
skos:prefLabel
| - Hamiltonovske problémy v dědičných třidách grafů charakterizované zakázanými indukovanými podgrafy.
- Hamiltonovske problémy v dědičných třidách grafů charakterizované zakázanými indukovanými podgrafy. (en)
|
skos:notation
| - RIV/49777513:23520/09:00501757!RIV10-MSM-23520___
|
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/49777513:23520/09:00501757
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - Graph; induced subgraph; forbidden subgraph; line graph; hamiltonian graphs; factor (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...iv/tvurceVysledku
| |
http://localhost/t...ganizacniJednotka
| |