About: Action recognition using combined local features     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • This paper presents a new algorithm for recognition of actions based on local space-time features. The algorithm resulted from intensive research of classification and feature extraction and it is an extension of the previously known ones. The most important achievement is that it is shown that through carefully selected combination of space-time features leads into better precision of recognition on some events comparing to the state-of-the-art algorithms while it is comparable on all other events. The paper describes the algorithm, its main features and improvements, demonstrates the achieved result, and draws conclusions.
  • This paper presents a new algorithm for recognition of actions based on local space-time features. The algorithm resulted from intensive research of classification and feature extraction and it is an extension of the previously known ones. The most important achievement is that it is shown that through carefully selected combination of space-time features leads into better precision of recognition on some events comparing to the state-of-the-art algorithms while it is comparable on all other events. The paper describes the algorithm, its main features and improvements, demonstrates the achieved result, and draws conclusions. (en)
Title
  • Action recognition using combined local features
  • Action recognition using combined local features (en)
skos:prefLabel
  • Action recognition using combined local features
  • Action recognition using combined local features (en)
skos:notation
  • RIV/00216305:26230/13:PU106374!RIV14-MSM-26230___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(7H12006), Z(MSM0021630528)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 59380
http://linked.open...ai/riv/idVysledku
  • RIV/00216305:26230/13:PU106374
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Action recognition, SVM, combination of features, space-time features. (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [A2555EAA71F7]
http://linked.open...v/mistoKonaniAkce
  • Prague, Czech Republic
http://linked.open...i/riv/mistoVydani
  • Praha
http://linked.open...i/riv/nazevZdroje
  • Proceedings of the IADIS Computer graphics, Visulisation, Coputer Vision and Image Processing 2013
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Zemčík, Pavel
  • Řezníček, Ivo
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • IADIS
https://schema.org/isbn
  • 978-972-8939-89-2
http://localhost/t...ganizacniJednotka
  • 26230
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 78 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software