About: LIFETIME PREDICTION OF INSULATING MATERIALS BY FUZZY-NEURAL NETWORKS AND EXPERT SYSTEMS     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The paper deals with searching for new methods of diagnostics and lifetime prediction of insulating materials of electric rotary machines windings. The subject of the diagnostics is to specify the condition of insulation used. In this time, the most popular diagnostics tools are the methods of artificial intelligence like expert systems and fuzzy neural networks. In our research we are using expert system for diagnostics of insulating material and fuzzy neural network for lifetime prediction of this material. Input of those systems is Bv (activation energy) which was obtained by non-destructive measurement method. The determination of this quantity is the main prerequisite for the determination of output coefficient Up (breakdown voltage) characterizing the lifetime of the insulating system and, consequently, the whole electric machine.
  • The paper deals with searching for new methods of diagnostics and lifetime prediction of insulating materials of electric rotary machines windings. The subject of the diagnostics is to specify the condition of insulation used. In this time, the most popular diagnostics tools are the methods of artificial intelligence like expert systems and fuzzy neural networks. In our research we are using expert system for diagnostics of insulating material and fuzzy neural network for lifetime prediction of this material. Input of those systems is Bv (activation energy) which was obtained by non-destructive measurement method. The determination of this quantity is the main prerequisite for the determination of output coefficient Up (breakdown voltage) characterizing the lifetime of the insulating system and, consequently, the whole electric machine. (en)
  • Tento článek pojednává o hledání nových metod diagnostiky a predikce životnosti izolačního materiálu vinutí elektrických točivých strojů.Předmětem diagnostiky je specifikovat užívaný stav izolace. Dnes jsou nejpopulárnější diagnostické nástroje metody z umělé inteligence jako expertní systémy a fuzzy neuronová sítě. V našem výzkumu používáme pro diagnostiku izolantu expertní systém a pro předpověď životnosti tohoto materiálu fuzzy neuronové sítě . Vstup těch systémů je Bv (aktivační energie) která byla získaná nedestruktivní měřící metodou. Určení této veličiny je hlavní předpoklad pro stanovení výstupního součinitele Up (průrazné napětí) charakterizující dobu životnosti izolačního systému a, následně, celého elektrického stroje. (cs)
Title
  • LIFETIME PREDICTION OF INSULATING MATERIALS BY FUZZY-NEURAL NETWORKS AND EXPERT SYSTEMS
  • PREDIKCE ŽIVOTNOSTI IZOLAČNÍHO IZOLAČNÍHO MATERIÁLU FUZZY NEURONOVÝMI SÍTĚMI A EXPERTNÍMI SYSTÉMY (cs)
  • LIFETIME PREDICTION OF INSULATING MATERIALS BY FUZZY-NEURAL NETWORKS AND EXPERT SYSTEMS (en)
skos:prefLabel
  • LIFETIME PREDICTION OF INSULATING MATERIALS BY FUZZY-NEURAL NETWORKS AND EXPERT SYSTEMS
  • PREDIKCE ŽIVOTNOSTI IZOLAČNÍHO IZOLAČNÍHO MATERIÁLU FUZZY NEURONOVÝMI SÍTĚMI A EXPERTNÍMI SYSTÉMY (cs)
  • LIFETIME PREDICTION OF INSULATING MATERIALS BY FUZZY-NEURAL NETWORKS AND EXPERT SYSTEMS (en)
skos:notation
  • RIV/00216305:26210/05:PU55160!RIV07-MSM-26210___
http://linked.open.../vavai/riv/strany
  • -
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • S, Z(MSM4977751310)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 528132
http://linked.open...ai/riv/idVysledku
  • RIV/00216305:26210/05:PU55160
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Neural Networks, Expert Systems, Diagnostics, Insulating Material, Artificial Intelligence (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [09509F115204]
http://linked.open...v/mistoKonaniAkce
  • Bucharest
http://linked.open...i/riv/mistoVydani
  • Fisciano, Italy
http://linked.open...i/riv/nazevZdroje
  • ICPR-18
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Hammer, Miloš
  • Latina, Petr
  • Říha, Zbyněk
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • University of Salerno
https://schema.org/isbn
  • 88-87030-96-0
http://localhost/t...ganizacniJednotka
  • 26210
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 85 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software