About: Can Deep Neural Networks Discover Meaningful Pattern Features?     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • Recent advances in the area of deep neural networks brought a lot of attention to some of the key issues important for their design. In particular for 2D-shapes, their accuracy has been shown to outperform all other classifiers. On the other hand, their training may be quite cumbersome and the structure of the network has to be chosen beforehand. This paper introduces a new sensitivity-based approach capable of picking the right image features from a pre-trained SOM-like feature detector. Experimental results obtained so far for hand-written digit recognition show that pruned network architectures impact a transparent representation of the features actually present in the data while improving network robustness.
  • Recent advances in the area of deep neural networks brought a lot of attention to some of the key issues important for their design. In particular for 2D-shapes, their accuracy has been shown to outperform all other classifiers. On the other hand, their training may be quite cumbersome and the structure of the network has to be chosen beforehand. This paper introduces a new sensitivity-based approach capable of picking the right image features from a pre-trained SOM-like feature detector. Experimental results obtained so far for hand-written digit recognition show that pruned network architectures impact a transparent representation of the features actually present in the data while improving network robustness. (en)
Title
  • Can Deep Neural Networks Discover Meaningful Pattern Features?
  • Can Deep Neural Networks Discover Meaningful Pattern Features? (en)
skos:prefLabel
  • Can Deep Neural Networks Discover Meaningful Pattern Features?
  • Can Deep Neural Networks Discover Meaningful Pattern Features? (en)
skos:notation
  • RIV/00216208:11320/12:10127469!RIV13-GA0-11320___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GAP103/10/0783), P(GAP202/10/1333), P(GD201/09/H057), S
http://linked.open...iv/cisloPeriodika
  • 12
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 125884
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11320/12:10127469
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • generalization; pruning; feature extraction; self-organization; image classification; convolutional neural networks (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [4778390CDC27]
http://linked.open...i/riv/nazevZdroje
  • Procedia Computer Science
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 2012
http://linked.open...iv/tvurceVysledku
  • Mrázová, Iveta
  • Kukačka, Marek
issn
  • 1877-0509
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.procs.2012.09.053
http://localhost/t...ganizacniJednotka
  • 11320
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software