About: Can Tangent Sphere Bundles over Riemannian Manifolds have Strictly Positive Curvature?     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • We prove, except some particular cases, that for every point x of a Riemannian manifold (M,g), dim M > 2, there is a curvature operator R(X,Y)(X,Y linearly independent) with nontrivial kernel. Then we apply our results to the problem in title.
  • We prove, except some particular cases, that for every point x of a Riemannian manifold (M,g), dim M > 2, there is a curvature operator R(X,Y)(X,Y linearly independent) with nontrivial kernel. Then we apply our results to the problem in title. (en)
Title
  • Can Tangent Sphere Bundles over Riemannian Manifolds have Strictly Positive Curvature?
  • Can Tangent Sphere Bundles over Riemannian Manifolds have Strictly Positive Curvature? (en)
skos:prefLabel
  • Can Tangent Sphere Bundles over Riemannian Manifolds have Strictly Positive Curvature?
  • Can Tangent Sphere Bundles over Riemannian Manifolds have Strictly Positive Curvature? (en)
skos:notation
  • RIV/00216208:11320/01:00105344!RIV/2002/GA0/113202/N
http://linked.open.../vavai/riv/strany
  • 110;118
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA201/99/0265), Z(MSM 113200007)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 674875
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11320/01:00105344
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Tangent;Sphere;Bundles;Riemannian;Manifolds;Strictly;Positive;Curvature; (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [E4E1C85B5260]
http://linked.open...v/mistoKonaniAkce
  • Boston, USA
http://linked.open...i/riv/mistoVydani
  • Boston, USA
http://linked.open...i/riv/nazevZdroje
  • Global Differential Geometry: The Mathematical Legacy of Alfred Gray
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...ocetUcastnikuAkce
http://linked.open...nichUcastnikuAkce
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Kowalski, Oldřich
  • Vlášek, Zdeněk
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • AMS
http://localhost/t...ganizacniJednotka
  • 11320
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software