About: Smooth norms and approximation in Banach spaces of the type C (K)     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Pokud C(K) prostor má Ck-hladký bump, pak má též Ck-hladké rozklady jedničky. Pokud má C(K) prostor duální LUR renormaci, pak má CINFIN-hladkou normu. (cs)
  • Two results are proved about the Banach space X = C(K), where K is compact and Hausdorff. The first concerns smooth approximation: let m be a positive integer or.INFIN.; we show that if there exists on X a non-zero function of class Cm with bounded support, then all continuous real-valued functions on X can be uniformly approximated by functions of class Cm. The second result is that if X admits a norm, equivalent to the supremum norm, with locally uniformly convex dual norm, then X also admits an equivalent norm that is of class CINFIN (except at 0).
  • Two results are proved about the Banach space X = C(K), where K is compact and Hausdorff. The first concerns smooth approximation: let m be a positive integer or.INFIN.; we show that if there exists on X a non-zero function of class Cm with bounded support, then all continuous real-valued functions on X can be uniformly approximated by functions of class Cm. The second result is that if X admits a norm, equivalent to the supremum norm, with locally uniformly convex dual norm, then X also admits an equivalent norm that is of class CINFIN (except at 0). (en)
Title
  • Smooth norms and approximation in Banach spaces of the type C (K)
  • Smooth norms and approximation in Banach spaces of the type C (K) (en)
  • Hladké normy a aproximace v Banachových prostorech typu C (K) (cs)
skos:prefLabel
  • Smooth norms and approximation in Banach spaces of the type C (K)
  • Smooth norms and approximation in Banach spaces of the type C (K) (en)
  • Hladké normy a aproximace v Banachových prostorech typu C (K) (cs)
skos:notation
  • RIV/67985840:_____/07:00092478!RIV08-AV0-67985840
http://linked.open.../vavai/riv/strany
  • 221;228
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA201/04/0090), Z(AV0Z10190503)
http://linked.open...iv/cisloPeriodika
  • 2
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 450550
http://linked.open...ai/riv/idVysledku
  • RIV/67985840:_____/07:00092478
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • C(K) space; partitions of unity (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • GB - Spojené království Velké Británie a Severního Irska
http://linked.open...ontrolniKodProRIV
  • [0A27836CE324]
http://linked.open...i/riv/nazevZdroje
  • Quarterly Journal of Mathematics
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 58
http://linked.open...iv/tvurceVysledku
  • Hájek, Petr Pavel
  • Haydon, R.
http://linked.open...n/vavai/riv/zamer
issn
  • 0033-5606
number of pages
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software