About: Fullerene C-70 characterization by C-13 NMR and the importance of the solvent and dynamics in spectral simulations     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The nuclear magnetic resonance (NMR) spectroscopy combined with theoretical calculations is an important tool for fullerene identification. However, the accuracy of available theoretical methods is often not adequate. Therefore, in this work, different computational aspects needed to simulate realistically chemical shifts in the C-70 molecule are investigated by density functional theory (DFT) calculations. The importance of the functional choice, basis set, solvent, and molecular motions was assessed. The solvent was simulated using the implicit conductor-like polarized continuum model. The molecular motions were included via anharmonic corrections and averaging of snapshots obtained from classical and first-principles molecular dynamics (MD) simulations. Comparison to experiment revealed that density functional calculations typically overestimate the C-13 NMR chemical shifts. Hybrid functionals, such as BHandH and BHandHLYP, and long-range corrected functionals, such as wB97xd and CAM-B3LYP, give the best results. While the solvent has a minor effect (chemical shift changes by similar to 1 ppm), the vibrational and dynamical effects are surprisingly large, causing changes up to 9 ppm. Consideration of the latter was also necessary to explain the observed temperature dependence. While the dynamical corrections for MD performed in vacuum were overestimated, inclusion of the solvent in simulations provided more realistic results. The study thus points out the importance of an appropriate solvent model and a complex approach to the modelling, balancing the static, dynamic and environmental factors.
  • The nuclear magnetic resonance (NMR) spectroscopy combined with theoretical calculations is an important tool for fullerene identification. However, the accuracy of available theoretical methods is often not adequate. Therefore, in this work, different computational aspects needed to simulate realistically chemical shifts in the C-70 molecule are investigated by density functional theory (DFT) calculations. The importance of the functional choice, basis set, solvent, and molecular motions was assessed. The solvent was simulated using the implicit conductor-like polarized continuum model. The molecular motions were included via anharmonic corrections and averaging of snapshots obtained from classical and first-principles molecular dynamics (MD) simulations. Comparison to experiment revealed that density functional calculations typically overestimate the C-13 NMR chemical shifts. Hybrid functionals, such as BHandH and BHandHLYP, and long-range corrected functionals, such as wB97xd and CAM-B3LYP, give the best results. While the solvent has a minor effect (chemical shift changes by similar to 1 ppm), the vibrational and dynamical effects are surprisingly large, causing changes up to 9 ppm. Consideration of the latter was also necessary to explain the observed temperature dependence. While the dynamical corrections for MD performed in vacuum were overestimated, inclusion of the solvent in simulations provided more realistic results. The study thus points out the importance of an appropriate solvent model and a complex approach to the modelling, balancing the static, dynamic and environmental factors. (en)
Title
  • Fullerene C-70 characterization by C-13 NMR and the importance of the solvent and dynamics in spectral simulations
  • Fullerene C-70 characterization by C-13 NMR and the importance of the solvent and dynamics in spectral simulations (en)
skos:prefLabel
  • Fullerene C-70 characterization by C-13 NMR and the importance of the solvent and dynamics in spectral simulations
  • Fullerene C-70 characterization by C-13 NMR and the importance of the solvent and dynamics in spectral simulations (en)
skos:notation
  • RIV/61388963:_____/13:00395025!RIV14-MSM-61388963
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(GA13-03978S), P(GA203/09/2037), P(GAP208/11/0105), P(GPP208/10/P356), P(LH11033)
http://linked.open...iv/cisloPeriodika
  • 23
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 75849
http://linked.open...ai/riv/idVysledku
  • RIV/61388963:_____/13:00395025
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • fullerene; NMR; simulations; DFT (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • GB - Spojené království Velké Británie a Severního Irska
http://linked.open...ontrolniKodProRIV
  • [4758605299D5]
http://linked.open...i/riv/nazevZdroje
  • Physical Chemistry Chemical Physics
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 15
http://linked.open...iv/tvurceVysledku
  • Bouř, Petr
  • Buděšínský, Miloš
  • Kaminský, Jakub
  • Straka, Michal
  • Taubert, S.
http://linked.open...ain/vavai/riv/wos
  • 000319285000041
issn
  • 1463-9076
number of pages
http://bibframe.org/vocab/doi
  • 10.1039/c3cp50657f
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software