About: Sequential optimal experiment design for neural networks using multiple linearization     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Design of an optimal input signal in system identification using multi-layer perceptron network is treated. It is shown that utilizing the conditional probability density function of parameters for design of the input signal provides better results than currently used procedures based on prameter point estimates only. The conditional probability density function of parameters is approximated by a sum of normal distributions.
  • Design of an optimal input signal in system identification using multi-layer perceptron network is treated. It is shown that utilizing the conditional probability density function of parameters for design of the input signal provides better results than currently used procedures based on prameter point estimates only. The conditional probability density function of parameters is approximated by a sum of normal distributions. (en)
Title
  • Sequential optimal experiment design for neural networks using multiple linearization
  • Sequential optimal experiment design for neural networks using multiple linearization (en)
skos:prefLabel
  • Sequential optimal experiment design for neural networks using multiple linearization
  • Sequential optimal experiment design for neural networks using multiple linearization (en)
skos:notation
  • RIV/49777513:23520/10:00503729!RIV11-GA0-23520___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA102/08/0442), P(GP102/06/P202), S
http://linked.open...iv/cisloPeriodika
  • 16-18
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 287006
http://linked.open...ai/riv/idVysledku
  • RIV/49777513:23520/10:00503729
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • System identification; optimal experiment design; nonlinear parameter estimation; multi-layer perceptron network (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [D4EB8AB98852]
http://linked.open...i/riv/nazevZdroje
  • Neurocomputing
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 73
http://linked.open...iv/tvurceVysledku
  • Hering, Pavel
  • Šimandl, Miroslav
issn
  • 0925-2312
number of pages
http://localhost/t...ganizacniJednotka
  • 23520
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 106 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software