About: Gaussian Sum Approach with Optimal Experiment Design for Neural Network     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Design of optimal input signal for system modeled by multi-layer perceptron network is treated. Because the true system is unknown, the design can be constructed only from the actually obtained model. However, neural networks with the same structure differing only in parameters values are able to approximate various nonlinear mappings therefore it is crucial maximally to use available informations to select suitable input data. Hence a global estimation method allowing to determine conditional probability density functions of network parameters will be used. The Gaussian sum approach based on approximation of arbitrary probability density function by a sum of normal distributions seems to be suitable to use. This approach is a less computationally demanding alternative to the sequential Monte Carlo methods and gives better results than the commonly used prediction error methods. The properties of the proposed experimental design are demonstrated in a numerical example.
  • Design of optimal input signal for system modeled by multi-layer perceptron network is treated. Because the true system is unknown, the design can be constructed only from the actually obtained model. However, neural networks with the same structure differing only in parameters values are able to approximate various nonlinear mappings therefore it is crucial maximally to use available informations to select suitable input data. Hence a global estimation method allowing to determine conditional probability density functions of network parameters will be used. The Gaussian sum approach based on approximation of arbitrary probability density function by a sum of normal distributions seems to be suitable to use. This approach is a less computationally demanding alternative to the sequential Monte Carlo methods and gives better results than the commonly used prediction error methods. The properties of the proposed experimental design are demonstrated in a numerical example. (en)
  • Článek se zabývá návrhem optimálního vstupního signálu v úloze identifikace nelineárního stochastického systému neuronovou sítí. Vstupní signál je navržen na základě aktuálně získaného modelu. Klíčovou úlohu proto hraje vhodná metoda odhadu parametrů. Navržená metoda generování vstupního signálu využívá podmíněných hustot pravděpodobnosti parametrů místo běžně užívaných bodových odhadů. Z tohoto důvodu byla k odhadu parametrů sítě použita globální metoda Gaussových směsí. Navržená metoda umožňuje lépe poznat identifikovaný systém, než pokud by byly použity stávající metody návrhu vstupního signálu. (cs)
Title
  • Gaussian Sum Approach with Optimal Experiment Design for Neural Network
  • Gaussian Sum Approach with Optimal Experiment Design for Neural Network (en)
  • Metoda Gaussových směsí při návrhu optimálního vstupního signálu neuronové sítě (cs)
skos:prefLabel
  • Gaussian Sum Approach with Optimal Experiment Design for Neural Network
  • Gaussian Sum Approach with Optimal Experiment Design for Neural Network (en)
  • Metoda Gaussových směsí při návrhu optimálního vstupního signálu neuronové sítě (cs)
skos:notation
  • RIV/49777513:23520/07:00501093!RIV09-GA0-23520___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA102/05/2075), P(GP102/06/P202)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 422981
http://linked.open...ai/riv/idVysledku
  • RIV/49777513:23520/07:00501093
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • System identification; optimal experiment design; nonlinear parameters estimation; probability density function; multi-layer perceptron network (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [E83BE1E1F52A]
http://linked.open...v/mistoKonaniAkce
  • Honolulu
http://linked.open...i/riv/mistoVydani
  • Anaheim
http://linked.open...i/riv/nazevZdroje
  • Signal and Image Processing
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Hering, Pavel
  • Šimandl, Miroslav
http://linked.open...vavai/riv/typAkce
http://linked.open...ain/vavai/riv/wos
  • 000251419000076
http://linked.open.../riv/zahajeniAkce
issn
  • 1482-7921
number of pages
http://purl.org/ne...btex#hasPublisher
  • ACTA Press
http://localhost/t...ganizacniJednotka
  • 23520
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 106 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software