Attributes | Values |
---|
rdf:type
| |
Description
| - The cyclin-dependent kinase, CDK2, regulates the eukaryotic cell cycle at the G1; S boundary. CDKs activity is regulated by complex mechanism including binding to positive regulatory subunit and phosphorylation at positive and/or negative regulatory sites [1]. For activation CDK2 requires binding to Cyclin A or Cyclin E. The CDK2 obtains full activity after phosphorylation of the threonine residue (T160) in the activation segment (T-loop) [2]. CDK2 catalyzes the phosphoryl transfer of the adenosine-5-triphosphate (ATP) g-phosphate to serine or threonine hydroxyl in the protein substrate. The CDKs activity is inhibited in several ways, for example, by (de)phosphorylation, interaction with various natural protein inhibitors [3,4], etc. The CDK2 can be negatively regulated by phosphorylation at Y15 and, to a lesser extent, at T14 in the glycine-rich loop (G-loop) [5]. This work describes behavior of the fully active CDK2 (pT160-CDK2/Cyclin A/ATP complex) with substrate peptide (HHASPRK) and CDK2 inhibit
- The cyclin-dependent kinase, CDK2, regulates the eukaryotic cell cycle at the G1; S boundary. CDKs activity is regulated by complex mechanism including binding to positive regulatory subunit and phosphorylation at positive and/or negative regulatory sites [1]. For activation CDK2 requires binding to Cyclin A or Cyclin E. The CDK2 obtains full activity after phosphorylation of the threonine residue (T160) in the activation segment (T-loop) [2]. CDK2 catalyzes the phosphoryl transfer of the adenosine-5-triphosphate (ATP) g-phosphate to serine or threonine hydroxyl in the protein substrate. The CDKs activity is inhibited in several ways, for example, by (de)phosphorylation, interaction with various natural protein inhibitors [3,4], etc. The CDK2 can be negatively regulated by phosphorylation at Y15 and, to a lesser extent, at T14 in the glycine-rich loop (G-loop) [5]. This work describes behavior of the fully active CDK2 (pT160-CDK2/Cyclin A/ATP complex) with substrate peptide (HHASPRK) and CDK2 inhibit (en)
- The cyclin-dependent kinase, CDK2, regulates the eukaryotic cell cycle at the G1; S boundary. CDKs activity is regulated by complex mechanism including binding to positive regulatory subunit and phosphorylation at positive and/or negative regulatory sites [1]. For activation CDK2 requires binding to Cyclin A or Cyclin E. The CDK2 obtains full activity after phosphorylation of the threonine residue (T160) in the activation segment (T-loop) [2]. CDK2 catalyzes the phosphoryl transfer of the adenosine-5-triphosphate (ATP) g-phosphate to serine or threonine hydroxyl in the protein substrate. The CDKs activity is inhibited in several ways, for example, by (de)phosphorylation, interaction with various natural protein inhibitors [3,4], etc. The CDK2 can be negatively regulated by phosphorylation at Y15 and, to a lesser extent, at T14 in the glycine-rich loop (G-loop) [5]. This work describes behavior of the fully active CDK2 (pT160-CDK2/Cyclin A/ATP complex) with substrate peptide (HHASPRK) and CDK2 inhibit (cs)
|
Title
| - A Molecular Dynamics Study of the Cyclin-Dependent Kinase-2 (CDK2) with Substrate Peptide (HHASPRK), Inhibition of CDK2 by Phosphorylation
- A Molecular Dynamics Study of the Cyclin-Dependent Kinase-2 (CDK2) with Substrate Peptide (HHASPRK), Inhibition of CDK2 by Phosphorylation (en)
- A Molecular Dynamics Study of the Cyclin-Dependent Kinase-2 (CDK2) with Substrate Peptide (HHASPRK), Inhibition of CDK2 by Phosphorylation (cs)
|
skos:prefLabel
| - A Molecular Dynamics Study of the Cyclin-Dependent Kinase-2 (CDK2) with Substrate Peptide (HHASPRK), Inhibition of CDK2 by Phosphorylation
- A Molecular Dynamics Study of the Cyclin-Dependent Kinase-2 (CDK2) with Substrate Peptide (HHASPRK), Inhibition of CDK2 by Phosphorylation (en)
- A Molecular Dynamics Study of the Cyclin-Dependent Kinase-2 (CDK2) with Substrate Peptide (HHASPRK), Inhibition of CDK2 by Phosphorylation (cs)
|
skos:notation
| - RIV/00216224:14310/04:00009964!RIV/2005/MSM/143105/N
|
http://linked.open.../vavai/riv/strany
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/00216224:14310/04:00009964
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - Cyclin dependent kinase, inhibition, phosphorylation, molecular dynamics (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...v/mistoKonaniAkce
| |
http://linked.open...i/riv/mistoVydani
| |
http://linked.open...i/riv/nazevZdroje
| - Materials in Structure Chemistry, Biology, Physics and Technology
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...iv/tvurceVysledku
| - Koča, Jaroslav
- Otyepka, Michal
- Kříž, Zdeněk
- Bártová, Iveta
|
http://linked.open...vavai/riv/typAkce
| |
http://linked.open.../riv/zahajeniAkce
| |
issn
| |
number of pages
| |
http://purl.org/ne...btex#hasPublisher
| - Krystalografická společnost
|
http://localhost/t...ganizacniJednotka
| |