This HTML5 document contains 42 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n21http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n20http://purl.org/net/nknouf/ns/bibtex#
n7http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n18http://linked.opendata.cz/resource/domain/vavai/subjekt/
n17http://linked.opendata.cz/ontology/domain/vavai/
n13https://schema.org/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n15http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00010669%3A_____%2F13%3A%230001600%21RIV14-MPO-00010669/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n16http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n12http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n11http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n8http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n19http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n5http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n4http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00010669%3A_____%2F13%3A%230001600%21RIV14-MPO-00010669
rdf:type
n17:Vysledek skos:Concept
rdfs:seeAlso
http://www.vzlu.cz/cz/transfer-vysledku/clanky-ve-sbornicich-d/
dcterms:description
We work with the system of equations describing non-stationary compressible turbulent fluid flow, and we focus on the numerical solution of these equations, and on the boundary conditions. The computational simulation of the propeller disk is a demanding and time-consuming task. Here the propeller disk is represented by the distribution of the vector of velocities along its radius. The main purpose is to describe the special compatible conditions used to simulate the propeller disk on the both its sides. In order to construct these conditions we analyze the equations in the close vicinity of the boundary. We use the analysis of the exact solution of the Riemann problem in order to solve this local boundary problem. The one-side modification of this problem has to be complemented with some other conditions. At the back side of the propeller disk, it is advantageous to use total density and the total pressure distribution, coming from the known distribution of axial velocities on the disk and the total state values at the inlet, and extra added velocities of rotation. At the front side of the disk, it is preferable to use the distribution of the flowing mass, known from the state values computed on the back side of the disk. We analyze the solution of these particular problems. We show the computational results of the flow around such propeller disk, obtained with the own-developed code for the solution of the 3D axis-symmetrical compressible turbulent gas flow. We work with the system of equations describing non-stationary compressible turbulent fluid flow, and we focus on the numerical solution of these equations, and on the boundary conditions. The computational simulation of the propeller disk is a demanding and time-consuming task. Here the propeller disk is represented by the distribution of the vector of velocities along its radius. The main purpose is to describe the special compatible conditions used to simulate the propeller disk on the both its sides. In order to construct these conditions we analyze the equations in the close vicinity of the boundary. We use the analysis of the exact solution of the Riemann problem in order to solve this local boundary problem. The one-side modification of this problem has to be complemented with some other conditions. At the back side of the propeller disk, it is advantageous to use total density and the total pressure distribution, coming from the known distribution of axial velocities on the disk and the total state values at the inlet, and extra added velocities of rotation. At the front side of the disk, it is preferable to use the distribution of the flowing mass, known from the state values computed on the back side of the disk. We analyze the solution of these particular problems. We show the computational results of the flow around such propeller disk, obtained with the own-developed code for the solution of the 3D axis-symmetrical compressible turbulent gas flow.
dcterms:title
Simulation of the Propeller Disk Inside the Symmetrical Channel Simulation of the Propeller Disk Inside the Symmetrical Channel
skos:prefLabel
Simulation of the Propeller Disk Inside the Symmetrical Channel Simulation of the Propeller Disk Inside the Symmetrical Channel
skos:notation
RIV/00010669:_____/13:#0001600!RIV14-MPO-00010669
n17:predkladatel
n18:ico%3A00010669
n3:aktivita
n11:I
n3:aktivity
I
n3:dodaniDat
n4:2014
n3:domaciTvurceVysledku
n7:8127344 n7:9182667
n3:druhVysledku
n5:D
n3:duvernostUdaju
n12:S
n3:entitaPredkladatele
n15:predkladatel
n3:idSjednocenehoVysledku
105268
n3:idVysledku
RIV/00010669:_____/13:#0001600
n3:jazykVysledku
n8:eng
n3:klicovaSlova
compressible gas flow; RANS; propeller disk; boundary conditions
n3:klicoveSlovo
n16:RANS n16:boundary%20conditions n16:compressible%20gas%20flow n16:propeller%20disk
n3:kontrolniKodProRIV
[6BF1CE3F8A53]
n3:mistoKonaniAkce
Kutná Hora
n3:mistoVydani
Liberec
n3:nazevZdroje
International Conference Experimental Fluid Mechanics 2013
n3:obor
n19:JU
n3:pocetDomacichTvurcuVysledku
2
n3:pocetTvurcuVysledku
2
n3:rokUplatneniVysledku
n4:2013
n3:tvurceVysledku
Kyncl, Martin Pelant, Jaroslav
n3:typAkce
n21:WRD
n3:zahajeniAkce
2013-11-19+01:00
s:numberOfPages
6
n20:hasPublisher
Polypress s.r.o.
n13:isbn
978-80-260-5375-0