"Citlivost m\u011B\u0159en\u00FDch dat p\u0159i \u00FAnavov\u00E9 \u0161\u00ED\u0159en\u00ED trhlin na tvar zku\u0161ebn\u00EDho t\u011Blesa"@cs . "[7C7C96ADD1A0]" . . . "1013-9826" . . . "RIV/68081723:_____/08:00317639!RIV09-AV0-68081723" . "Key Engineering Materials" . "Sensitivity of Fatigue Crack Growth Data to Specimen Geometry" . "000262126000140" . . "Fatigue crack; Paris law; threshold values"@en . . . "B\u011B\u017En\u011B u\u017E\u00EDvan\u00E1 formulace pro \u0161\u00ED\u0159en\u00ED \u00FAnavov\u00E9 trhliny je Paris\u016Fv-Erdogan\u016Fv z\u00E1kon. Pro dan\u00E9 experiment\u00E1ln\u00ED podm\u00EDnky (jako je teplota, parametr asymetrie cyklu nebo laboratorn\u00ED podm\u00EDnky) experiment\u00E1ln\u011B zji\u0161t\u011Bn\u00E9 parametry C a m jsou pova\u017Eov\u00E1ny za materi\u00E1lov\u00E9 konstanty. Potom pro dan\u00FD materi\u00E1l rychlost \u0161\u00ED\u0159en\u00ED \u00FAnavov\u00E9 trhliny p\u0159i stejn\u00FDch enviroment\u00E1ln\u00EDch podm\u00EDnk\u00E1ch z\u00E1vis\u00ED pouze na rozkmitu sou\u010Dinitele intenzity nap\u011Bt\u00ED. V oblasti prahov\u00FDch hodnot rychlosti \u0161\u00ED\u0159en\u00ED \u00FAnavov\u00FDch trhlin lze vid\u011Bt posun v nam\u011B\u0159en\u00FDch datech. Posun dat m\u016F\u017Ee b\u00FDt v d\u016Fsledku r\u016Fzn\u00E9 geometrie pou\u017Eit\u00FDch vzork\u016F. Auto\u0159i presentuj\u00ED jejich laboratorn\u00ED data nam\u011B\u0159en\u00FDch na tvarov\u011B r\u016Fzn\u00FDch experiment\u00E1ln\u00EDch vzorc\u00EDch."@cs . "A commonly used formula in the field of high cycle fatigue is the Paris-Erdogan law. For given experimental conditions (such as temperature, stress ratio or environmental conditions) the parameters C and m have to be experimentally determined and considered as material constants. Thus, for a given material, the fatigue crack growth rate (FCGR) depends only on the applied range of the stress intensity factor. In a threshold region a significant shift in the data of the fatigue crack propagation rate can be observed. The shift is induced by different test specimen geometry. The authors will present their own laboratory fatigue crack growth rate test data measured on two different specimens with different levels of constraint and for different steels. It is demonstrated that fatigue characteristics (i.e. C, m and Kth) obtained from different specimen geometries are not only properties of the materials but properties of the structure itself."@en . . "RIV/68081723:_____/08:00317639" . "-" . . "CH - \u0160v\u00FDcarsk\u00E1 konfederace" . . . "3"^^ . "394402" . "P(GA101/08/1623), P(GP106/06/P239), Z(AV0Z20410507)" . "A commonly used formula in the field of high cycle fatigue is the Paris-Erdogan law. For given experimental conditions (such as temperature, stress ratio or environmental conditions) the parameters C and m have to be experimentally determined and considered as material constants. Thus, for a given material, the fatigue crack growth rate (FCGR) depends only on the applied range of the stress intensity factor. In a threshold region a significant shift in the data of the fatigue crack propagation rate can be observed. The shift is induced by different test specimen geometry. The authors will present their own laboratory fatigue crack growth rate test data measured on two different specimens with different levels of constraint and for different steels. It is demonstrated that fatigue characteristics (i.e. C, m and Kth) obtained from different specimen geometries are not only properties of the materials but properties of the structure itself." . "Sensitivity of Fatigue Crack Growth Data to Specimen Geometry"@en . . . . "Sensitivity of Fatigue Crack Growth Data to Specimen Geometry"@en . "3"^^ . "385-387" . "4"^^ . "Citlivost m\u011B\u0159en\u00FDch dat p\u0159i \u00FAnavov\u00E9 \u0161\u00ED\u0159en\u00ED trhlin na tvar zku\u0161ebn\u00EDho t\u011Blesa"@cs . . "Kn\u00E9sl, Zden\u011Bk" . . "Sensitivity of Fatigue Crack Growth Data to Specimen Geometry" . . . . "Huta\u0159, Pavel" . "Seitl, Stanislav" . .