. "A324" . "0921-5093" . "RIV/68081723:_____/02:07023139!RIV/2003/GA0/A07003/N" . . . . "Skleni\u010Dka, V\u00E1clav" . "[666660460F2E]" . . "P(GA106/99/0187), P(GA106/99/1717), P(IAA2041902), Z(AV0Z2041904)" . "Svoboda, Milan" . "Materials Science and Engineering. A" . . "1-2" . . . . "151;156" . . . "Constant stress tensile creep tests were conducted to failure at temperatures 423 and 473 K on an AZ 91 (Mg-9wt%Al-1wt%Zn) alloy reinforced with 20 vol. % Al2O3 short fibres and on an unreinforced AZ 91 matrix alloy. The creep resistance of the reinforced material showed to be considerably improved compared to the matrix alloy. Microstructural investigation revealed that the most frequent morphology of the b-phase precipitates in the composite is continuous Mg17Al12 platelets. Detailed TEM investigations indicate that the matrix microstructure does not significantly influences the creep properties of both materials. This results confirm an idea that the creep strengthening in the composite is controlled by an effective load transfer between the matrix and the fibres."@en . "0"^^ . . . "0"^^ . "4"^^ . "662645" . . "RIV/68081723:_____/02:07023139" . . . "NL - Nizozemsko" . "6"^^ . . "Langdon, T. G." . "composites; magnesium alloys; creep"@en . . "5"^^ . . "The role of matrix microstructure in the creep behaviour of discontinuous fiber-reinforced AZ91 magnesium alloy." . "The role of matrix microstructure in the creep behaviour of discontinuous fiber-reinforced AZ91 magnesium alloy." . "Kucha\u0159ov\u00E1, Kv\u011Bta" . . "The role of matrix microstructure in the creep behaviour of discontinuous fiber-reinforced AZ91 magnesium alloy."@en . "Constant stress tensile creep tests were conducted to failure at temperatures 423 and 473 K on an AZ 91 (Mg-9wt%Al-1wt%Zn) alloy reinforced with 20 vol. % Al2O3 short fibres and on an unreinforced AZ 91 matrix alloy. The creep resistance of the reinforced material showed to be considerably improved compared to the matrix alloy. Microstructural investigation revealed that the most frequent morphology of the b-phase precipitates in the composite is continuous Mg17Al12 platelets. Detailed TEM investigations indicate that the matrix microstructure does not significantly influences the creep properties of both materials. This results confirm an idea that the creep strengthening in the composite is controlled by an effective load transfer between the matrix and the fibres." . . . "The role of matrix microstructure in the creep behaviour of discontinuous fiber-reinforced AZ91 magnesium alloy."@en . "Pahutov\u00E1, Marie" .