. . "Minimal L-infinity-type spaces on strictly pseudoconvex domains on which the Bergman projection is continuous"@en . "\u010Cl\u00E1nek popisuje nejmen\u0161\u00ED prostor funkc\u00ED na siln\u00E9 pseudokonvexn\u00ED oblasti s hladkou hranic\u00ED, kter\u00FD obsahuje v\u0161echny omezen\u00E9 funkce, jeho topologie je d\u00E1na v\u00E1\u017Een\u00FDmi sup-normami a Bergmanova projekce je na n\u011Bm spojit\u00E1. Podobn\u00FD v\u00FDsledek je z\u00EDsk\u00E1n i pro v\u00E1\u017Een\u00E9 Bergmanovy projekce."@cs . . . . . "US - Spojen\u00E9 st\u00E1ty americk\u00E9" . "Taskinen, J." . . "The paper describes the smallest space of functions on a smoothly bounded strictly pseudoconvex domain which contains all bounded functions, its topology is given by a family of weighted sup-norms, and the Bergman projection is continuous on it. We also obtain analogous assertions for weighted Bergman projections." . "485897" . "[03028DD73FD0]" . . "The paper describes the smallest space of functions on a smoothly bounded strictly pseudoconvex domain which contains all bounded functions, its topology is given by a family of weighted sup-norms, and the Bergman projection is continuous on it. We also obtain analogous assertions for weighted Bergman projections."@en . "253;275" . . "Bergman projection; weighted supremum norms; locally convex space"@en . "0362-1588" . . "Engli\u0161, Miroslav" . "23"^^ . "RIV/67985840:_____/06:00041179!RIV07-AV0-67985840" . "H\u00E4nninen, T." . "2" . "Minimal L-infinity-type spaces on strictly pseudoconvex domains on which the Bergman projection is continuous"@en . "RIV/67985840:_____/06:00041179" . "P(GA201/03/0041), P(IAA1019304), Z(AV0Z10190503)" . "3"^^ . . . . . "Minim\u00E1ln\u00ED prostory typu L-nekone\u010Dno na siln\u011B pseudokonvexn\u00EDch oblastech, na nich\u017E je Bergmanova projekce spojit\u00E1"@cs . . . "Minimal L-infinity-type spaces on strictly pseudoconvex domains on which the Bergman projection is continuous" . . "Minim\u00E1ln\u00ED prostory typu L-nekone\u010Dno na siln\u011B pseudokonvexn\u00EDch oblastech, na nich\u017E je Bergmanova projekce spojit\u00E1"@cs . . "Minimal L-infinity-type spaces on strictly pseudoconvex domains on which the Bergman projection is continuous" . "1"^^ . "Houston Journal of Mathematics" . "32" .