. "US - Spojen\u00E9 st\u00E1ty americk\u00E9" . . "395;408" . "M\u00FCller, Vladim\u00EDr" . "218" . "P(GA201/03/0041), Z(AV0Z10190503)" . "0022-1236" . "RIV/67985840:_____/05:00022875!RIV06-AV0-67985840" . "Hyperreflexivita kone\u010Dn\u011B dimension\u00E1ln\u00EDch podprostor\u016F"@cs . "Hyperreflexivity of finite-dimensional subspaces" . . "reflexive subspaces; hyperreflexive subspace; hyperreflexive constant"@en . "Hyperreflexivita kone\u010Dn\u011B dimension\u00E1ln\u00EDch podprostor\u016F"@cs . . . "Journal of Functional Analysis" . . "Hyperreflexivity of finite-dimensional subspaces" . "1"^^ . . "2"^^ . . "14"^^ . "3" . . "Hyperreflexivity of finite-dimensional subspaces"@en . "Je uk\u00E1z\u00E1no, \u017Ee ka\u017Ed\u00FD kone\u010Dn\u011B dimension\u00E1ln\u00ED podprostor oper\u00E1tor\u016F je hyperreflexivn\u00ED. To d\u00E1v\u00E1 kladnou odpov\u011B\u010F na probl\u00E9m Krause a Larsona."@cs . "We show that each reflexive finite-dimensional subspace of operators is hyperreflexive. This gives a positive answer to a problem of Kraus and Larson. We also show that each n-dimensional subspace of Hilbert space operators is [..2n]-hyperreflexive."@en . "[051E52AE7839]" . . "RIV/67985840:_____/05:00022875" . . . "Hyperreflexivity of finite-dimensional subspaces"@en . . "We show that each reflexive finite-dimensional subspace of operators is hyperreflexive. This gives a positive answer to a problem of Kraus and Larson. We also show that each n-dimensional subspace of Hilbert space operators is [..2n]-hyperreflexive." . . "Ptak, M." . . . . "524024" .