. . "[98F6E3B7FF19]" . . . . "1"^^ . . "The dissertation thesis deals with the numerical solution of conservation laws. These laws are used for describing hydromechanics problems especially shallow water flow and fluid flow through the radial symmetric elastic tube. These models are detailed in chapter 2 and they are based on the systems of hyperbolic partial differential equations (shallow water flow is described by Saint-Venant equations). Therefore the chapter 3 takes care of theory of hyperbolic equations. The exact and weak solution are defined among others. The main part of this chapter describes the properties of finite volume methods like conservation, consistency and stability. The basic methods for solving conservation laws are introduced in the chapters 4 and 5. The upwind methods (chapter 4) are based on solution of special problem with discontinuous initial condition called Riemann problem. The exact and approximate solution of this problem is presented too. One of the approximate Riemann solvers is Roe's solver, which is"@en . . "S" . "Adaptivn\u00ED metody kone\u010Dn\u00FDch objem\u016F pro z\u00E1kony zachov\u00E1n\u00ED mechaniky tekutin" . . "augmented system; central-upwind method; positive semidefiniteness; steady states; conservation law; balanced law; Roe's solver; Riemann problem; fluid flow problem"@en . "Adaptive finite volume methods for conservation laws of fluid mechanics"@en . "1"^^ . "Adaptivn\u00ED metody kone\u010Dn\u00FDch objem\u016F pro z\u00E1kony zachov\u00E1n\u00ED mechaniky tekutin"@cs . . . "301940" . "Adaptive finite volume methods for conservation laws of fluid mechanics"@en . . . . "Adaptivn\u00ED metody kone\u010Dn\u00FDch objem\u016F pro z\u00E1kony zachov\u00E1n\u00ED mechaniky tekutin"@cs . "Diserta\u010Dn\u00ED pr\u00E1ce se zab\u00FDv\u00E1 numerick\u00FDm \u0159e\u0161en\u00EDm z\u00E1kon\u016F zachov\u00E1n\u00ED a bilan\u010Dn\u00EDch vztah\u016F, kter\u00FDmi jsou pops\u00E1ny p\u0159edev\u0161\u00EDm \u00FAlohy z oblasti mechaniky tekutin. Konkr\u00E9tn\u011B se jedn\u00E1 o modely popisuj\u00EDc\u00ED proud\u011Bn\u00ED v m\u011Blk\u00FDch vod\u00E1ch a proud\u011Bn\u00ED v radi\u00E1ln\u011B symetrick\u00E9 elastick\u00E9 trubici. Modely jsou pops\u00E1ny v kapitole 2 a jsou zalo\u017Eeny na soustav\u00E1ch parci\u00E1ln\u00EDch diferenci\u00E1ln\u00EDch rovnic hyperbolick\u00E9ho typu (proud\u011Bn\u00ED v m\u011Blk\u00FDch vod\u00E1ch je pops\u00E1no Saint-Venantov\u00FDmi rovnicemi). Z d\u016Fvodu jejich pou\u017Eit\u00ED je v kapitole 3 v\u011Bnov\u00E1na pozornost teoretick\u00FDm z\u00E1klad\u016Fm \u0159e\u0161en\u00ED t\u011Bchto rovnic, mimo jin\u00E9 je zde definov\u00E1no siln\u00E9 a slab\u00E9 \u0159e\u0161en\u00ED. Velk\u00E1 \u010D\u00E1st t\u00E9to kapitoly je tak\u00E9 v\u011Bnov\u00E1na vlastnostem metod kone\u010Dn\u00FDch objem\u016F, jako jsou konzervativita, konzistence a stabilita. V kapitol\u00E1ch 4 a 5 jsou pops\u00E1ny z\u00E1kladn\u00ED metody pro \u0159e\u0161en\u00ED homogenn\u00EDch hyperbolick\u00FDch rovnic. V kapitole 4 jsou to metody typu upwind, kter\u00E9 jsou zalo\u017Eeny na \u0159e\u0161en\u00ED speci\u00E1ln\u00ED \u00FAlohy s nespojitou po\u010D\u00E1te\u010Dn\u00ED podm\u00EDnkou, kter\u00E9 \u0159\u00EDk\u00E1me Riemann\u016Fv probl\u00E9m. Je pops\u00E1no jeho p\u0159esn\u00E9 i p\u0159ibli\u017En\u00E9"@cs . . . . "RIV/49777513:23520/09:00502094!RIV10-MSM-23520___" . "RIV/49777513:23520/09:00502094" . "Diserta\u010Dn\u00ED pr\u00E1ce se zab\u00FDv\u00E1 numerick\u00FDm \u0159e\u0161en\u00EDm z\u00E1kon\u016F zachov\u00E1n\u00ED a bilan\u010Dn\u00EDch vztah\u016F, kter\u00FDmi jsou pops\u00E1ny p\u0159edev\u0161\u00EDm \u00FAlohy z oblasti mechaniky tekutin. Konkr\u00E9tn\u011B se jedn\u00E1 o modely popisuj\u00EDc\u00ED proud\u011Bn\u00ED v m\u011Blk\u00FDch vod\u00E1ch a proud\u011Bn\u00ED v radi\u00E1ln\u011B symetrick\u00E9 elastick\u00E9 trubici. Modely jsou pops\u00E1ny v kapitole 2 a jsou zalo\u017Eeny na soustav\u00E1ch parci\u00E1ln\u00EDch diferenci\u00E1ln\u00EDch rovnic hyperbolick\u00E9ho typu (proud\u011Bn\u00ED v m\u011Blk\u00FDch vod\u00E1ch je pops\u00E1no Saint-Venantov\u00FDmi rovnicemi). Z d\u016Fvodu jejich pou\u017Eit\u00ED je v kapitole 3 v\u011Bnov\u00E1na pozornost teoretick\u00FDm z\u00E1klad\u016Fm \u0159e\u0161en\u00ED t\u011Bchto rovnic, mimo jin\u00E9 je zde definov\u00E1no siln\u00E9 a slab\u00E9 \u0159e\u0161en\u00ED. Velk\u00E1 \u010D\u00E1st t\u00E9to kapitoly je tak\u00E9 v\u011Bnov\u00E1na vlastnostem metod kone\u010Dn\u00FDch objem\u016F, jako jsou konzervativita, konzistence a stabilita. V kapitol\u00E1ch 4 a 5 jsou pops\u00E1ny z\u00E1kladn\u00ED metody pro \u0159e\u0161en\u00ED homogenn\u00EDch hyperbolick\u00FDch rovnic. V kapitole 4 jsou to metody typu upwind, kter\u00E9 jsou zalo\u017Eeny na \u0159e\u0161en\u00ED speci\u00E1ln\u00ED \u00FAlohy s nespojitou po\u010D\u00E1te\u010Dn\u00ED podm\u00EDnkou, kter\u00E9 \u0159\u00EDk\u00E1me Riemann\u016Fv probl\u00E9m. Je pops\u00E1no jeho p\u0159esn\u00E9 i p\u0159ibli\u017En\u00E9" . . "Egermaier, Ji\u0159\u00ED" . . . . "Adaptivn\u00ED metody kone\u010Dn\u00FDch objem\u016F pro z\u00E1kony zachov\u00E1n\u00ED mechaniky tekutin" . "23520" .