"[27D0C6A596D8]" . . . "Z\u00E1pado\u010Desk\u00E1 univerzita v Plzni" . "323-330" . . "RIV/49777513:23520/06:00000176" . . "Matematick\u00E9 modelov\u00E1n\u00ED c\u00E9vn\u00ED st\u011Bny - osov\u011B symetrick\u00E1 trubice s 3D mikrostrukturou"@cs . "8"^^ . "2"^^ . "Hrad Ne\u010Dtiny" . . . "Mathematical model of arterial wall - axisymetric tube with 3D microstructure" . . "80-7043-477-5" . "2"^^ . "Mathematical model of arterial wall - axisymetric tube with 3D microstructure"@en . . "RIV/49777513:23520/06:00000176!RIV08-MSM-23520___" . "\u010Cl\u00E1nek pojedn\u00E1v\u00E1 o dvou\u0161k\u00E1lov\u00E9m modelov\u00E1n\u00ED c\u00E9vn\u00ED st\u011Bny s respektov\u00E1n\u00EDm jej\u00ED mikrostruktury. C\u00E9vn\u00ED st\u011Bna je na makroskopick\u00E9 \u00FArovni pova\u017Eov\u00E1na za osov\u011B symetrickou trubici. Na mikroskopick\u00E9 \u0161k\u00E1le uva\u017Eujeme tk\u00E1\u0148 jako periodickou strukturu slo\u017Eenou z por\u00E9zn\u00ED hyperelastick\u00E9 matrice a inkluz\u00ED vypln\u011Bn\u00FDch nestla\u010Ditelnou kapalinou. Inkluze a matrice jsou odd\u011Bleny propustnou membr\u00E1nou. Mikrostruktura d\u00E1le obsahuje elastick\u00E1 vl\u00E1kna je\u017E reprezentuj\u00ED bun\u011B\u010Dn\u00FD cytoskeleton. Difuzn\u00ED jevy, odpov\u00EDdaj\u00EDc\u00ED za viskoelastick\u00E9 chov\u00E1n\u00ED tk\u00E1n\u00ED, jsou zahrnuty do matematick\u00E9ho modelu m\u011Bkk\u00E9 tk\u00E1n\u011B. Numerick\u00E9 p\u0159\u00EDklady demonstruj\u00ED deforma\u010Dn\u011B-difuzn\u00ED procesy na 3D mikrostruktu\u0159e. Pro numerick"@cs . . . "This article deals with two scale modelling of an arterial wall with respect to its microstructure. The arterial wall is assumed as an axisymmetric tube at the macroscopic scale. At the microscopic level the tissue is considered as a periodic structure composed of hyperelastic matrix and inclusion filled by incompressible fluid and separated from the matrix by a permeable membrane. The elastic fibres representing cell cytosceleton are taken into account in the model at the microscopic scale. The diffusion effects that are responsible for viscoelastic behaviour of the tissue are incorporated to the mathematical model of the soft tissue. Numerical examples demonstrate deformation-diffusion processes within the 3D microstructure and 2D axisymmetric macrostructure representing arterial wall. The parallel algorithm was used to solve the coupled micro-macro problems."@en . . . "Matematick\u00E9 modelov\u00E1n\u00ED c\u00E9vn\u00ED st\u011Bny - osov\u011B symetrick\u00E1 trubice s 3D mikrostrukturou"@cs . "Computational mechanics 2006" . "484382" . "This article deals with two scale modelling of an arterial wall with respect to its microstructure. The arterial wall is assumed as an axisymmetric tube at the macroscopic scale. At the microscopic level the tissue is considered as a periodic structure composed of hyperelastic matrix and inclusion filled by incompressible fluid and separated from the matrix by a permeable membrane. The elastic fibres representing cell cytosceleton are taken into account in the model at the microscopic scale. The diffusion effects that are responsible for viscoelastic behaviour of the tissue are incorporated to the mathematical model of the soft tissue. Numerical examples demonstrate deformation-diffusion processes within the 3D microstructure and 2D axisymmetric macrostructure representing arterial wall. The parallel algorithm was used to solve the coupled micro-macro problems." . "Rohan, Eduard" . "2006-01-01+01:00"^^ . "Luke\u0161, Vladim\u00EDr" . "23520" . "Mathematical model of arterial wall - axisymetric tube with 3D microstructure"@en . . "Pilsen" . "Mathematical model of arterial wall - axisymetric tube with 3D microstructure" . "porous media; diffusion; viscoelasticity"@en . "Z(MSM4977751303)" . . . . .