"2" . "Development of high specific speed Francis turbine for low head HPP"@en . . . "69133" . "P(ED0002/01/01)" . "RIV/00216305:26210/13:PU104360!RIV15-MSM-26210___" . "Krausov\u00E1, Hana" . "Obrovsk\u00FD, Ji\u0159\u00ED" . "Development of high specific speed Francis turbine for low head HPP" . "\u0160pidla, Ji\u0159\u00ED" . . . . "RIV/00216305:26210/13:PU104360" . . . "Development of high specific speed Francis turbine for low head HPP"@en . "1802-1484" . "Engineering Mechanics" . . . . "[F8E958A7E46A]" . "Nowadays we can commonly encounter with revitalizations of an original HPPs which were earlier fitted with Francis turbines. They were often placed to the locations with low head and higher discharge which means high specific speed (ns > 400). Generally it is quite complex to design Francis turbines for such high specific speed. These very old turbines usually have lower efficiency due to the earlier limited possibilities of hydraulic design. An exchange of a water turbine with another type can be quite expensive and therefore it can be more suitable to change only an old runner for a new one. In this article the design process of high specific speed turbine ns = 430 is described. Optimization was done as the full-automatic cycle and was based on a simplex optimization method as well as on a genetic algorithm. For the parameterization of the runner blade, the BladeGen software was used and CFD (Computational Fluid Dynamics) analysis was run in Ansys CFX v.14 software. The final shape of the runner bla" . "Development of high specific speed Francis turbine for low head HPP" . "Nowadays we can commonly encounter with revitalizations of an original HPPs which were earlier fitted with Francis turbines. They were often placed to the locations with low head and higher discharge which means high specific speed (ns > 400). Generally it is quite complex to design Francis turbines for such high specific speed. These very old turbines usually have lower efficiency due to the earlier limited possibilities of hydraulic design. An exchange of a water turbine with another type can be quite expensive and therefore it can be more suitable to change only an old runner for a new one. In this article the design process of high specific speed turbine ns = 430 is described. Optimization was done as the full-automatic cycle and was based on a simplex optimization method as well as on a genetic algorithm. For the parameterization of the runner blade, the BladeGen software was used and CFD (Computational Fluid Dynamics) analysis was run in Ansys CFX v.14 software. The final shape of the runner bla"@en . "26210" . "Francis turbine, high specific speed, CFD, optimization method, objective function"@en . . . . "20" . "CZ - \u010Cesk\u00E1 republika" . . "1"^^ . "Zouhar, Josef" . . "10"^^ . "4"^^ . . .