"80-969264-4-6" . . "83-85" . . "Z(MSM0021630518)" . . "Solutions of continuous-time systems by the discrete methods"@en . "540895" . "1"^^ . . . . "26210" . "1"^^ . "RIV/00216305:26210/05:PU55869!RIV06-MSM-26210___" . "\u0158e\u0161en\u00ED spojit\u00FDch syst\u00E9m\u016F diskr\u00E9tn\u00EDmi metodami"@cs . "Bratislava, Slovensko" . "[38D0C1C4C413]" . . "3"^^ . . . . "Slovensk\u00E1 technick\u00E1 univerzita v Bratislave. Strojn\u00EDcka fakulta. Katedra matematiky" . "RIV/00216305:26210/05:PU55869" . . "\u0158e\u0161en\u00ED spojit\u00FDch syst\u00E9m\u016F diskr\u00E9tn\u00EDmi metodami"@cs . . . "2005-02-01+01:00"^^ . "\u0158e\u0161en\u00ED spojit\u00FDch syst\u00E9m\u016F diskr\u00E9tn\u00EDmi metodami" . "Discretization is necessary for the analysis and design of discrete-time systems. It is also useful for simulating continuous-time control systems on the digital computer. One of the simplest ways of discretizing or approximating a continuous-time plant is numerical approximation of differential equations. Difference equations can be obtained by discretizing differential equations \u2013 it is shown in this contribution. The other way of discretization is discretization by z transformation of transfer functiion G(s). In this contribution is shown Euler\u2019s method and bilinear method of this transformation and a method when the derivative term is simply replaced by a first-order difference expression and the integral by a sum."@en . "Diskretizace je nezbytn\u00E1 pro anal\u00FDzu a navrhov\u00E1n\u00ED diskr\u00E9tn\u00EDch \u0159\u00EDdic\u00EDch syst\u00E9m\u016F. \u010Casto je tak\u00E9 vhodn\u00E1 pro simulaci spojit\u00FDch \u0159\u00EDdic\u00EDch syst\u00E9m\u016F na po\u010D\u00EDta\u010Di. Jeden z nejjednodu\u0161\u0161\u00EDch zp\u016Fsob\u016F diskretizace nebo aproximace spojit\u00FDch soustav je numerick\u00E1 aproximace diferenci\u00E1ln\u00EDch rovnic. Diferen\u010Dn\u00ED rovnice mohou b\u00FDt z\u00EDsk\u00E1ny diskretizac\u00ED diferenci\u00E1ln\u00EDch rovnic jak je uk\u00E1z\u00E1no v tomto p\u0159\u00EDsp\u011Bvku. Diskretizaci lze tak\u00E9 prov\u00E1d\u011Bt z \u2013 transformac\u00ED pou\u017Eit\u00EDm p\u0159enosu G(z). V tomto p\u0159\u00EDsp\u011Bvku je uk\u00E1z\u00E1na Eulerova metoda disskretizace a biline\u00E1rn\u00ED metoda diskretizace a diskretizace n\u00E1hradou integr\u00E1l\u016F a derivac\u00ED sumami a diferencemi."@cs . . "\u0158e\u0161en\u00ED spojit\u00FDch syst\u00E9m\u016F diskr\u00E9tn\u00EDmi metodami" . "Solutions of continuous-time systems by the discrete methods"@en . . "Diskretizace je nezbytn\u00E1 pro anal\u00FDzu a navrhov\u00E1n\u00ED diskr\u00E9tn\u00EDch \u0159\u00EDdic\u00EDch syst\u00E9m\u016F. \u010Casto je tak\u00E9 vhodn\u00E1 pro simulaci spojit\u00FDch \u0159\u00EDdic\u00EDch syst\u00E9m\u016F na po\u010D\u00EDta\u010Di. Jeden z nejjednodu\u0161\u0161\u00EDch zp\u016Fsob\u016F diskretizace nebo aproximace spojit\u00FDch soustav je numerick\u00E1 aproximace diferenci\u00E1ln\u00EDch rovnic. Diferen\u010Dn\u00ED rovnice mohou b\u00FDt z\u00EDsk\u00E1ny diskretizac\u00ED diferenci\u00E1ln\u00EDch rovnic jak je uk\u00E1z\u00E1no v tomto p\u0159\u00EDsp\u011Bvku. Diskretizaci lze tak\u00E9 prov\u00E1d\u011Bt z \u2013 transformac\u00ED pou\u017Eit\u00EDm p\u0159enosu G(z). V tomto p\u0159\u00EDsp\u011Bvku je uk\u00E1z\u00E1na Eulerova metoda disskretizace a biline\u00E1rn\u00ED metoda diskretizace a diskretizace n\u00E1hradou integr\u00E1l\u016F a derivac\u00ED sumami a diferencemi." . "4th International Conference Aplimat" . . "Discretization,difference equations,z transformation ,transfer function G(s)"@en . . "Bratislava" . "\u0160varc, Ivan" .