"Relationships between 31P Chemical Shift Tensors and Conformation of Nucleic Acid Backbobe: A DFT Study" . . . . "P\u0159ececht\u011Blov\u00E1, Jana" . . . . "Relationships between 31P Chemical Shift Tensors and Conformation of Nucleic Acid Backbobe: A DFT Study"@en . . . . "10"^^ . "NMR chemical shift tensor 31P nucleic acids"@en . . "4"^^ . . . "RIV/00216224:14310/07:00021992!RIV10-MSM-14310___" . "4"^^ . . "Sklen\u00E1\u0159, Vladim\u00EDr" . "Journal of Physical Chemistry B" . . "14310" . "Relationships between 31P Chemical Shift Tensors and Conformation of Nucleic Acid Backbobe: A DFT Study"@en . . "1520-6106" . "111" . "P(LC06030), Z(MSM0021622413)" . "Density functional theory (DFT) has been applied to study the conformational dependence of 31P chemical shift tensors in B-DNA. The gg and gt conformations of backbone phosphate groups representing BI- and BII-DNA have been examined. Calculations have been carried out on static models of dimethyl phosphate (dmp) and dinucleoside-3',5'-monophosphate with bases replaced by hydrogen atoms in vacuo as well as in an explicit solvent. Trends in 31P chemical shift anisotropy (CSA) tensors with respect to the backbone torsion angles alpha, zeta, beta, and epsilon are presented. Although these trends do not change qualitatively upon solvation, quantitative changes result in the reduction of the chemical shift anisotropy. For and in the range from 270 deg to 330 deg and from 240 deg to 300 deg, respectively, the delta22 and delta33 principal components vary within as much as 30 ppm, showing a marked dependence on backbone conformation."@en . "Munzarov\u00E1, Mark\u00E9ta" . "Density functional theory (DFT) has been applied to study the conformational dependence of 31P chemical shift tensors in B-DNA. The gg and gt conformations of backbone phosphate groups representing BI- and BII-DNA have been examined. Calculations have been carried out on static models of dimethyl phosphate (dmp) and dinucleoside-3',5'-monophosphate with bases replaced by hydrogen atoms in vacuo as well as in an explicit solvent. Trends in 31P chemical shift anisotropy (CSA) tensors with respect to the backbone torsion angles alpha, zeta, beta, and epsilon are presented. Although these trends do not change qualitatively upon solvation, quantitative changes result in the reduction of the chemical shift anisotropy. For and in the range from 270 deg to 330 deg and from 240 deg to 300 deg, respectively, the delta22 and delta33 principal components vary within as much as 30 ppm, showing a marked dependence on backbone conformation." . . "447219" . "RIV/00216224:14310/07:00021992" . . "12" . . "CZ - \u010Cesk\u00E1 republika" . "Nov\u00E1k, Petr" . "Relationships between 31P Chemical Shift Tensors and Conformation of Nucleic Acid Backbobe: A DFT Study" . "[982EB43243E1]" .