"[30ED3FF34FC1]" . "Bilipschitz mappings with derivatives of bounded variation"@en . . "RIV/00216208:11320/08:00100807" . "0214-1493" . "Bilipschitz; mappings; derivatives; bounded; variation"@en . "Nech\u0165 $\\Omega\\subset\\rn$ je otev\u0159en\u00E1 a $f:\\Omega\\to\\rn$ je bilipschitzovsk\u00E9 zobrazen\u00ED takov\u00E9, \u017Ee $Df\\in BV_{\\loc}(\\Omega,\\er^{n^2})$. Pak inverzn\u00ED zobrazen\u00ED spl\u0148uje $Df^{-1}\\in BV_{\\loc}(f(\\Omega),\\er^{n^2})$."@cs . . . "357974" . "RIV/00216208:11320/08:00100807!RIV09-MSM-11320___" . "1" . . . . . . "Publicacions Matematiques" . . . "000253494900004" . "P(GP201/06/P100), Z(MSM0021620839)" . . "ES - \u0160pan\u011Blsk\u00E9 kr\u00E1lovstv\u00ED" . "Bilipschitz mappings with derivatives of bounded variation" . . "52" . "Bilipschitzovsk\u00E9 zobrazen\u00ED s kone\u010Dnou variac\u00ED"@cs . "1"^^ . "9"^^ . . "Bilipschitz mappings with derivatives of bounded variation" . "1"^^ . "Hencl, Stanislav" . . "Let $\\Omega\\subset\\rn$ be open and suppose that $f:\\Omega\\to\\rn$ is a bilipschitz mapping such that $Df\\in BV_{\\loc}(\\Omega,\\er^{n^2})$. We show that under these assumptions the inverse satisfies $Df^{-1}\\in BV_{\\loc}(f(\\Omega),\\er^{n^2})$."@en . . "11320" . "Let $\\Omega\\subset\\rn$ be open and suppose that $f:\\Omega\\to\\rn$ is a bilipschitz mapping such that $Df\\in BV_{\\loc}(\\Omega,\\er^{n^2})$. We show that under these assumptions the inverse satisfies $Df^{-1}\\in BV_{\\loc}(f(\\Omega),\\er^{n^2})$." . . . "Bilipschitz mappings with derivatives of bounded variation"@en . . . "Bilipschitzovsk\u00E9 zobrazen\u00ED s kone\u010Dnou variac\u00ED"@cs .