"Direct methods in physical geodesy"@en . . "1"^^ . . "Boundary value problems;numerical methods;Sobolev's space;Dirichlet's principle;minimum of a quadratic functional"@en . "Holota, Petr" . "708866" . "P\u0159\u00EDm\u00E9 metody ve fyzik\u00E1ln\u00ED geod\u00E9zii"@cs . . "1999-01-01+01:00"^^ . "Birmingham" . "[9A90F4E18755]" . "Direct methods in physical geodesy" . "General principles of direct and variational methods are discussed first, together with basic functional-analytic tools, especially Sobolev's weight space. An interpretation of Neumann's problem as a minimization problem for a quadratic functional is approached as an example. The focus, however, is on the linear gravimetric boundary value problem and a successive rectification of an oblique derivative in the respective boundary condition for the disturbing potential. The convergence and a tie of this concept to minimization principles is discussed. Finally, an interpretation in terms of function bases is shown." . . . "Geodesy Beyond 2000 - The Challenges of the First Decade" . . "3-540-67002-5" . . "Direct methods in physical geodesy"@en . . . . . "RIV/00025615:_____/00:00010906!RIV/2005/MSM/C01005/N" . . "RIV/00025615:_____/00:00010906" . . "8"^^ . "163-170" . . . . . . "P\u0159\u00EDm\u00E9 metody ve fyzik\u00E1ln\u00ED geod\u00E9zii"@cs . "General principles of direct and variational methods are discussed first, together with basic functional-analytic tools, especially Sobolev's weight space. An interpretation of Neumann's problem as a minimization problem for a quadratic functional is approached as an example. The focus, however, is on the linear gravimetric boundary value problem and a successive rectification of an oblique derivative in the respective boundary condition for the disturbing potential. The convergence and a tie of this concept to minimization principles is discussed. Finally, an interpretation in terms of function bases is shown."@en . "Springer-Verlag" . "V \u010Dl\u00E1nku jsou nejprve vylo\u017Eeny obecn\u00E9 principy p\u0159\u00EDm\u00FDch a varia\u010Dn\u00EDch metod spolu se z\u00E1kladn\u00EDmi funkcion\u00E1ln\u011B-analytick\u00FDmi pojmy, zejm\u00E9na Sobolevov\u00FDm v\u00E1hov\u00FDm prostorem. Interpretace Neumannovy \u00FAlohy ve smyslu minimalizace kvadratick\u00E9ho funkcion\u00E1lu je pod\u00E1na jako p\u0159\u00EDklad. Pozornost je pak v\u011Bnov\u00E1na line\u00E1rn\u00EDmu gravimetrick\u00E9mu okrajov\u00E9mu probl\u00E9mu a postupn\u00E9 rektifikaci \u0161ikm\u00E9 derivace v okrajov\u00E9 podm\u00EDnce pro poruchov\u00FD potenci\u00E1l. N\u00E1sledn\u011B je diskutov\u00E1na konvergence tohoto postupu a jeho vztah k minimaliza\u010Dn\u00EDm princip\u016Fm. V z\u00E1v\u011Bru je postup vylo\u017Een ve smyslu funkcion\u00E1ln\u00EDch bas\u00ED."@cs . . . "P(GA205/99/0833), P(LA 015), Z(CUZVUGTKC0101)" . "1"^^ . . "Berlin" . "Direct methods in physical geodesy" .