. "0"^^ . "Scholastick\u00E9 teorie vztahu jako mo\u017En\u00FD zdroj strukturalistick\u00E9 koncepce \u010D\u00EDsla."@cs . . "2375"^^ . . . "Scholastick\u00E9 teorie vztahu jako mo\u017En\u00FD zdroj strukturalistick\u00E9 koncepce \u010D\u00EDsla."@en . . "Relation; structure; number; realism; nominalism; scholastic; analytical; philosophy."@en . "2013-02-01+01:00"^^ . "1"^^ . "Ontologie \u010D\u00EDsla pat\u0159\u00ED mezi d\u016Fle\u017Eit\u00E1 t\u00E9mata filosofie matematiky. S aktu\u00E1ln\u00EDm \u0159e\u0161en\u00EDm t\u00E9to problematiky p\u0159ich\u00E1z\u00ED strukturalismus, jeho\u017E p\u0159edstavitel\u00E9 h\u00E1j\u00ED n\u00E1zor, \u017Ee \u010D\u00EDsla neexistuj\u00ED samostatn\u011B, ale jsou generov\u00E1na vz\u00E1jemn\u00FDmi vztahy. Strukturalist\u00E9 v\u0161ak nejsou jednotn\u00ED v ontologick\u00FDch ot\u00E1zk\u00E1ch. N\u011Bkte\u0159\u00ED (nominalist\u00E9) se domn\u00EDvaj\u00ED, \u017Ee struktury a pota\u017Emo \u010D\u00EDsla v prav\u00E9m slova smyslu neexistuj\u00ED; jin\u00ED (ultrarealist\u00E9) naopak tvrd\u00ED, \u017Ee struktury i \u010D\u00EDsla existuj\u00ED re\u00E1ln\u011B na zp\u016Fsob platonsk\u00FDch idej\u00ED. Tento spor tak p\u0159ipom\u00EDn\u00E1 ranou diskusi o povaze univerz\u00E1li\u00ED, v n\u00ED\u017E po ur\u010Ditou dobu neexistovalo \u0159e\u0161en\u00ED, kter\u00E9 by \u00FAsp\u011B\u0161n\u011B syntetizovalo p\u0159ednosti realismu a nominalismu. Zat\u00EDmco tradi\u010Dn\u00ED spor o univerz\u00E1lie posl\u00E9ze vy\u00FAstil v koncepci tzv. um\u00EDrn\u011Bn\u00E9ho realismu, chyb\u00ED dosud podobn\u00E1 koncepce ve strukturalismu. P\u0159\u00ED\u010Dinu tohoto neuspokojiv\u00E9ho stavu spat\u0159ujeme v tom, \u017Ee dosavadn\u00ED diskuse nev\u011Bnovaly dostate\u010Dnou pozornost ontologii vztahu. Tento nedostatek chceme napravit tak, \u017Ee d\u016Fkladn\u011B prozkoum\u00E1me ontologii vztahu, a to nejenom v sou\u010Dasn\u00E9 analytick\u00E9 filosofii, ale p\u0159edev\u0161\u00EDm ve scholastice."@cs . . "0"^^ . "0"^^ . "\"Ontology of number belongs to central issues of philosophy of mathematics. One actual solution to this problem is provided by structuralism whose supporters claim that numbers do not exist independently, but that they are generated by their mutual relations. However, structuralists are not unanimous in the ontology of number. Some of them (nominalists) argue that structures and consequently numbers don\u00B4t really exist; others (ultrarealists) assert that structures and numbers exist in the manner of Plato\u2019s Ideas. This argument recalls the early dispute over universals. However, while the dispute over universals finally resulted in the conception of moderate realism which synthesized pros and cons of ultrarealism and nominalism, no such \"\"moderate\"\" conception can be found in structuralism. We are convinced that this shortcoming is caused by an insufficient attention which has been paid to the ontology of relation so far. Our project seeks to remedy the situation by a thorough investigation of the ontology of relation which appeared especially in the scholastic tradition.\""@en . "0"^^ . "2016-12-31+01:00"^^ . . . . . "2375"^^ .