This HTML5 document contains 105 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n2http://linked.opendata.cz/resource/drugbank/drug/
n12http://linked.opendata.cz/resource/drugbank/drug/DB06151/identifier/kegg-compound/
dctermshttp://purl.org/dc/terms/
n11http://linked.opendata.cz/resource/drugbank/drug/DB06151/identifier/pdb/
n20http://linked.opendata.cz/resource/mesh/concept/
foafhttp://xmlns.com/foaf/0.1/
n27http://linked.opendata.cz/resource/drugbank/company/
n8http://linked.opendata.cz/resource/drugbank/drug/DB06151/identifier/pubchem-compound/
n21http://linked.opendata.cz/resource/drugbank/dosage/
n6http://linked.opendata.cz/resource/drugbank/drug/DB06151/identifier/pubchem-substance/
n13http://linked.opendata.cz/resource/drugbank/drug/DB06151/identifier/kegg-drug/
n14http://linked.opendata.cz/resource/drugbank/drug/DB06151/identifier/drugbank/
n26http://bio2rdf.org/drugbank:
n9http://linked.opendata.cz/resource/drugbank/drug/DB06151/identifier/national-drug-code-directory/
admshttp://www.w3.org/ns/adms#
n28http://www.rxlist.com/cgi/generic/
n29http://wifo5-03.informatik.uni-mannheim.de/drugbank/resource/drugs/
n16http://linked.opendata.cz/resource/drugbank/drug/DB06151/identifier/chemspider/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n10http://linked.opendata.cz/resource/drugbank/medicinal-product/
n19http://linked.opendata.cz/ontology/mesh/
owlhttp://www.w3.org/2002/07/owl#
n3http://linked.opendata.cz/ontology/drugbank/
n23http://www.drugs.com/cdi/
n15http://linked.opendata.cz/resource/drugbank/drug/DB06151/identifier/chebi/
n4http://linked.opendata.cz/resource/drugbank/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
n30http://linked.opendata.cz/resource/drugbank/drug/DB06151/identifier/wikipedia/
n17http://linked.opendata.cz/ontology/sukl/drug/
n18http://linked.opendata.cz/resource/atc/
n7http://linked.opendata.cz/resource/drugbank/drug/DB06151/identifier/pharmgkb/

Statements

Subject Item
n2:DB06151
rdf:type
n3:Drug
n3:description
Acetylcysteine (also known as N-acetylcysteine or N-acetyl-L-cysteine or NAC) is primarily used as a mucolytic agent and in the management of acetaminophen poisoning. It is a derivative of cysteine with an acetyl group attached to the amino group of cysteine. NAC is essentially a prodrug that is converted to cysteine (in the intestine by the enzyme aminoacylase 1) and absorbed in the intestine into the blood stream. Cysteine is a key constituent to glutathione and hence administration of acetylcysteine replenishes glutathione stores. Acetylcysteine can also be used as a general antioxidant which can help mitigate symptoms for a variety of diseases exacerbated by reactive oxygen species (ROS). For instance, acetylcysteine is commonly used in individuals with renal impairment to prevent the precipitation of acute renal failure. Acetylcysteine has been shown to have efficacy in treating mild to moderate traumatic brain injury including ischemic brain injury, particularly in reducing neuronal losses, and also reducing cognitive and neurological symptoms when administered promptly after injury. N-acetylcysteine is now widely used in the treatment of HIV, and it has reported efficacy in chronic obstructive pulmonary disease and contrast-induced nephropathy. Acetylcysteine is also being successfully used to treat a variety of neuropsychiatric and neurodegenerative disorders including cocaine, cannabis, and smoking addictions, Alzheimer's and Parkinson's diseases, autism, compulsive and grooming disorders, schizophrenia, depression, and bipolar disorder. Recent data also shows that N-acetylcysteine inhibits muscle fatigue and can be used to enhance performance in endurance events and in exercise and endurance training.
n3:dosage
n21:271B4951-363D-11E5-9242-09173F13E4C5 n21:271B4952-363D-11E5-9242-09173F13E4C5 n21:271B4953-363D-11E5-9242-09173F13E4C5 n21:271B4954-363D-11E5-9242-09173F13E4C5 n21:271B4955-363D-11E5-9242-09173F13E4C5 n21:271B4956-363D-11E5-9242-09173F13E4C5
n3:generalReferences
# Bachert C, Hormann K, Mosges R, Rasp G, Riechelmann H, Muller R, Luckhaupt H, Stuck BA, Rudack C: An update on the diagnosis and treatment of sinusitis and nasal polyposis. Allergy. 2003 Mar;58(3):176-91. "Pubmed":http://www.ncbi.nlm.nih.gov/pubmed/12653791 # Bailey B, McGuigan MA: Management of anaphylactoid reactions to intravenous N-acetylcysteine. Ann Emerg Med. 1998 Jun;31(6):710-5. "Pubmed":http://www.ncbi.nlm.nih.gov/pubmed/9624310 # Breitkreutz R, Pittack N, Nebe CT, Schuster D, Brust J, Beichert M, Hack V, Daniel V, Edler L, Droge W: Improvement of immune functions in HIV infection by sulfur supplementation: two randomized trials. J Mol Med. 2000;78(1):55-62. "Pubmed":http://www.ncbi.nlm.nih.gov/pubmed/10759030 # Dawson AH, Henry DA, McEwen J: Adverse reactions to N-acetylcysteine during treatment for paracetamol poisoning. Med J Aust. 1989 Mar 20;150(6):329-31. "Pubmed":http://www.ncbi.nlm.nih.gov/pubmed/2716644 # Fulghesu AM, Ciampelli M, Muzj G, Belosi C, Selvaggi L, Ayala GF, Lanzone A: N-acetyl-cysteine treatment improves insulin sensitivity in women with polycystic ovary syndrome. Fertil Steril. 2002 Jun;77(6):1128-35. "Pubmed":http://www.ncbi.nlm.nih.gov/pubmed/12057717 # Jones AL: Mechanism of action and value of N-acetylcysteine in the treatment of early and late acetaminophen poisoning: a critical review. J Toxicol Clin Toxicol. 1998;36(4):277-85. "Pubmed":http://www.ncbi.nlm.nih.gov/pubmed/9711192
n3:group
approved
n3:halfLife
5.6 hours (adults), 11 hours (neonates)
n3:indication
Acetylcysteine is used mainly as a mucolytic and in the management of paracetamol (acetaminophen) overdose.
owl:sameAs
n26:DB06151 n29:DB06151
dcterms:title
Acetylcysteine
adms:identifier
n6:99443235 n7:PA448033 n8:12035 n9:0517-7604-25 n11:SC2 n12:C06809 n13:D00221 n14:DB06151 n15:28939 n16:11540 n30:Acetylcysteine
n3:mechanismOfAction
Acetylcysteine protects against acetaminophen overdose-induced hepatotoxicity by maintaining or restoring hepatic concentrations of glutathione. It does this by producing the glutathione precursor L-cysteine. Glutathione is required to inactivate an intermediate metabolite (N-acetyl-p-benzoquinoneimine or NAPQI) of acetaminophen that is thought to be hepatotoxic. In acetaminophen overdose cases, excessive quantities of this metabolite are formed because the primary metabolic (glucuronide and sulfate conjugation) pathways become saturated. Acetylcysteine may act by reducing the metabolite to the parent compound and/or by providing sulfhydryl for conjugation of the metabolite. Experimental evidence also suggests that a sulfhydryl-containing compound such as acetylcysteine may also directly inactivate the metabolite. The mechanisms of action for acetylcysteine’s well-known mucolytic effects are different. In particular, when inhaled, acetylcysteine (and its metabolic byproduct cysteine) exerts its mucolytic action through its free sulfhydryl group, which reduces the disulfide bonds in the mucus matrix and lowers mucus viscosity. This action increases with increasing pH and is most significant at pH 7 to 9. The mucolytic action of acetylcysteine is not affected by the presence of DNA. Acetylcysteine is also an antioxidant and reduces oxidative stress. Acetylcysteine serves as a prodrug to L-cysteine which is a precursor to the biologic antioxidant, glutathione and hence administration of acetylcysteine replenishes glutathione stores. L-cysteine also serves as a precursor to cystine which in turn serves as a substrate for the cystine-glutamate antiporter on astrocytes hence increasing glutamate release into the extracellular space. This glutamate in turn acts on mGluR2/3 receptors, and at higher doses of acetylcysteine, mGluR5. Glutathione also modulates the NMDA receptor by acting at the redox site. These effects on glutamate and NMDA signaling appear to explain some of the positive neuropsychotropic effects associated with NAC. Acetylcysteine also possesses some anti-inflammatory effects possibly via inhibiting NF-κB through redox activation of the nuclear factor kappa kinases thereby modulating cytokine synthesis.
n3:packager
n27:271B4942-363D-11E5-9242-09173F13E4C5 n27:271B4943-363D-11E5-9242-09173F13E4C5 n27:271B4941-363D-11E5-9242-09173F13E4C5 n27:271B4944-363D-11E5-9242-09173F13E4C5 n27:271B4938-363D-11E5-9242-09173F13E4C5 n27:271B4939-363D-11E5-9242-09173F13E4C5 n27:271B493C-363D-11E5-9242-09173F13E4C5 n27:271B493D-363D-11E5-9242-09173F13E4C5 n27:271B493A-363D-11E5-9242-09173F13E4C5 n27:271B493B-363D-11E5-9242-09173F13E4C5 n27:271B4940-363D-11E5-9242-09173F13E4C5 n27:271B493E-363D-11E5-9242-09173F13E4C5 n27:271B493F-363D-11E5-9242-09173F13E4C5
n3:synonym
L-alpha-acetamido-beta-Mercaptopropionic acid Mercapturic acid (2R)-2-acetylamino-3-Sulfanylpropanoic acid (R)-Mercapturic acid N-Acetyl-L-(+)-cysteine N-acetylcysteine Acetylcysteinum L-Acetylcysteine N-ACETYL-L-cysteine Acetilcisteina Acetylcysteine (R)-2-acetylamino-3-Mercaptopropanoic acid
n3:toxicity
Single intravenous doses of acetylcysteine at 1000 mg/kg in mice, 2445 mg/kg in rats, 1500 mg/kg in guinea pigs, 1200 mg/kg in rabbits and 500 mg/kg in dogs were lethal. Symptoms of acute toxicity were ataxia, hypoactivity, labored respiration, cyanosis, loss of righting reflex and convulsions.
n3:proteinBinding
83%
n3:synthesisReference
Rolf-Dieter Juch, Gerd Birrenbach, Christian Pflugshaupt, "Solid, fast-soluble pharmaceutical preparation containing S-(carboxymethyl)-L-cysteine and/or N-acetylcysteine." U.S. Patent US5401514, issued November, 1990.
n19:hasConcept
n20:M0000171
foaf:page
n23:acetylcysteine-solution.html n28:acetylcysteine.htm
n3:IUPAC-Name
n4:271B495B-363D-11E5-9242-09173F13E4C5
n3:InChI
n4:271B4961-363D-11E5-9242-09173F13E4C5
n3:Molecular-Formula
n4:271B4960-363D-11E5-9242-09173F13E4C5
n3:Molecular-Weight
n4:271B495D-363D-11E5-9242-09173F13E4C5
n3:Monoisotopic-Weight
n4:271B495E-363D-11E5-9242-09173F13E4C5
n3:SMILES
n4:271B495F-363D-11E5-9242-09173F13E4C5
n3:Water-Solubility
n4:271B4959-363D-11E5-9242-09173F13E4C5
n3:logP
n4:271B495A-363D-11E5-9242-09173F13E4C5 n4:271B4957-363D-11E5-9242-09173F13E4C5
n3:logS
n4:271B4958-363D-11E5-9242-09173F13E4C5
n3:pKa
n4:271B4972-363D-11E5-9242-09173F13E4C5
n17:hasATCCode
n18:V03AB23 n18:S01XA08 n18:R05CB01
n3:H-Bond-Acceptor-Count
n4:271B4967-363D-11E5-9242-09173F13E4C5
n3:H-Bond-Donor-Count
n4:271B4968-363D-11E5-9242-09173F13E4C5
n3:InChIKey
n4:271B4962-363D-11E5-9242-09173F13E4C5
n3:Polar-Surface-Area--PSA-
n4:271B4963-363D-11E5-9242-09173F13E4C5
n3:Polarizability
n4:271B4965-363D-11E5-9242-09173F13E4C5
n3:Refractivity
n4:271B4964-363D-11E5-9242-09173F13E4C5
n3:Rotatable-Bond-Count
n4:271B4966-363D-11E5-9242-09173F13E4C5
n3:absorption
Bioavailability is 6–10% following oral administration and less than 3% following topical administration.
n3:affectedOrganism
Humans and other mammals
n3:casRegistryNumber
616-91-1
n3:category
n3:containedIn
n10:271B4949-363D-11E5-9242-09173F13E4C5 n10:271B494A-363D-11E5-9242-09173F13E4C5 n10:271B4947-363D-11E5-9242-09173F13E4C5 n10:271B4948-363D-11E5-9242-09173F13E4C5 n10:271B494C-363D-11E5-9242-09173F13E4C5 n10:271B494D-363D-11E5-9242-09173F13E4C5 n10:271B494B-363D-11E5-9242-09173F13E4C5 n10:271B4950-363D-11E5-9242-09173F13E4C5 n10:271B494E-363D-11E5-9242-09173F13E4C5 n10:271B494F-363D-11E5-9242-09173F13E4C5 n10:271B4946-363D-11E5-9242-09173F13E4C5 n10:271B4945-363D-11E5-9242-09173F13E4C5
n3:Bioavailability
n4:271B496D-363D-11E5-9242-09173F13E4C5
n3:Ghose-Filter
n4:271B496F-363D-11E5-9242-09173F13E4C5
n3:MDDR-Like-Rule
n4:271B4970-363D-11E5-9242-09173F13E4C5
n3:Melting-Point
n4:271B4971-363D-11E5-9242-09173F13E4C5
n3:Number-of-Rings
n4:271B496C-363D-11E5-9242-09173F13E4C5
n3:Physiological-Charge
n4:271B496B-363D-11E5-9242-09173F13E4C5
n3:Rule-of-Five
n4:271B496E-363D-11E5-9242-09173F13E4C5
n3:Traditional-IUPAC-Name
n4:271B495C-363D-11E5-9242-09173F13E4C5
n3:pKa--strongest-acidic-
n4:271B4969-363D-11E5-9242-09173F13E4C5
n3:pKa--strongest-basic-
n4:271B496A-363D-11E5-9242-09173F13E4C5