This HTML5 document contains 37 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n19http://localhost/temp/predkladatel/
n14http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n6http://linked.opendata.cz/resource/domain/vavai/subjekt/
n5http://linked.opendata.cz/ontology/domain/vavai/
n12http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F70883521%3A28110%2F13%3A43869752%21RIV14-MSM-28110___/
shttp://schema.org/
rdfshttp://www.w3.org/2000/01/rdf-schema#
skoshttp://www.w3.org/2004/02/skos/core#
n4http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n8http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n17http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n18http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n16http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n15http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n13http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n7http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F70883521%3A28110%2F13%3A43869752%21RIV14-MSM-28110___
rdf:type
skos:Concept n5:Vysledek
rdfs:seeAlso
http://www.naun.org/multimedia/NAUN/mcs/16-627.pdf
dcterms:description
The contribution studies prediction of the given semibatch reactor using multilayer feed-forward neural networks. The two prediction approaches are tested-signal prediction approach and system prediction methodology. The first approach is commonly applied in time series prediction, while the input-output models in the second methodology are used for example in the control tasks. Furthermore, the resulting predictor is used for the model predictive control of the reactor in order to test performance of the developed method. The contribution studies prediction of the given semibatch reactor using multilayer feed-forward neural networks. The two prediction approaches are tested-signal prediction approach and system prediction methodology. The first approach is commonly applied in time series prediction, while the input-output models in the second methodology are used for example in the control tasks. Furthermore, the resulting predictor is used for the model predictive control of the reactor in order to test performance of the developed method.
dcterms:title
Multilayer feed-forward neural networks in prediction and predictive control of semi-batch reactor Multilayer feed-forward neural networks in prediction and predictive control of semi-batch reactor
skos:prefLabel
Multilayer feed-forward neural networks in prediction and predictive control of semi-batch reactor Multilayer feed-forward neural networks in prediction and predictive control of semi-batch reactor
skos:notation
RIV/70883521:28110/13:43869752!RIV14-MSM-28110___
n5:predkladatel
n6:orjk%3A28110
n4:aktivita
n18:V
n4:aktivity
V
n4:cisloPeriodika
1
n4:dodaniDat
n7:2014
n4:domaciTvurceVysledku
n14:6639801
n4:druhVysledku
n13:J
n4:duvernostUdaju
n17:S
n4:entitaPredkladatele
n12:predkladatel
n4:idSjednocenehoVysledku
90074
n4:idVysledku
RIV/70883521:28110/13:43869752
n4:jazykVysledku
n16:eng
n4:klicovaSlova
Artificial neural network||Chemical reactor||Prediction||Predictive control
n4:klicoveSlovo
n8:Artificial%20neural%20network%7C%7CChemical%20reactor%7C%7CPrediction%7C%7CPredictive%20control
n4:kodStatuVydavatele
GB - Spojené království Velké Británie a Severního Irska
n4:kontrolniKodProRIV
[FB2A8EC2472D]
n4:nazevZdroje
International Journal of Mathematics and Computers in Simulations
n4:obor
n15:BC
n4:pocetDomacichTvurcuVysledku
1
n4:pocetTvurcuVysledku
2
n4:rokUplatneniVysledku
n7:2013
n4:svazekPeriodika
7
n4:tvurceVysledku
Sámek, David Macků, Lubomír
s:issn
1998-0159
s:numberOfPages
9
n19:organizacniJednotka
28110