This HTML5 document contains 39 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n8http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n19http://localhost/temp/predkladatel/
n11http://purl.org/net/nknouf/ns/bibtex#
n12http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n14http://linked.opendata.cz/resource/domain/vavai/subjekt/
n13http://linked.opendata.cz/ontology/domain/vavai/
n17https://schema.org/
shttp://schema.org/
n4http://linked.opendata.cz/ontology/domain/vavai/riv/
skoshttp://www.w3.org/2004/02/skos/core#
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n5http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n9http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n16http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n20http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F68407700%3A21340%2F13%3A00210924%21RIV14-MSM-21340___/
n15http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n21http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n18http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n6http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F68407700%3A21340%2F13%3A00210924%21RIV14-MSM-21340___
rdf:type
skos:Concept n13:Vysledek
dcterms:description
This article deals with the method of algebraic multigrid and its parallelization on GPU. Algebraic multigrid is a sparse matrix iterative solver, which finds the solution by solving also restricted versions of the original problem. The main difference from more widely known geometric multigrid is that it can create the restricted problems without any knowledge about the matrix origin and therefore it can be used for larger range of problems. The article farther presents possibilities how to parallelize this algorithm on multicore CPU architecture and on GPU. Finally it also shows speedup obtained by the GPU parallelization. This article deals with the method of algebraic multigrid and its parallelization on GPU. Algebraic multigrid is a sparse matrix iterative solver, which finds the solution by solving also restricted versions of the original problem. The main difference from more widely known geometric multigrid is that it can create the restricted problems without any knowledge about the matrix origin and therefore it can be used for larger range of problems. The article farther presents possibilities how to parallelize this algorithm on multicore CPU architecture and on GPU. Finally it also shows speedup obtained by the GPU parallelization.
dcterms:title
Algebraic Multigrid on GPU Algebraic Multigrid on GPU
skos:prefLabel
Algebraic Multigrid on GPU Algebraic Multigrid on GPU
skos:notation
RIV/68407700:21340/13:00210924!RIV14-MSM-21340___
n13:predkladatel
n14:orjk%3A21340
n4:aktivita
n15:S
n4:aktivity
S
n4:dodaniDat
n6:2014
n4:domaciTvurceVysledku
n12:7235313
n4:druhVysledku
n21:D
n4:duvernostUdaju
n9:S
n4:entitaPredkladatele
n20:predkladatel
n4:idSjednocenehoVysledku
60055
n4:idVysledku
RIV/68407700:21340/13:00210924
n4:jazykVysledku
n16:eng
n4:klicovaSlova
GPU; Algebraic Multigrid; Parallelization
n4:klicoveSlovo
n5:GPU n5:Parallelization n5:Algebraic%20Multigrid
n4:kontrolniKodProRIV
[686A35370007]
n4:mistoKonaniAkce
Praha
n4:mistoVydani
Praha
n4:nazevZdroje
Doktorandské dny 2013
n4:obor
n18:IN
n4:pocetDomacichTvurcuVysledku
1
n4:pocetTvurcuVysledku
1
n4:rokUplatneniVysledku
n6:2013
n4:tvurceVysledku
Klement, Vladimír
n4:typAkce
n8:CST
n4:zahajeniAkce
2013-11-15+01:00
s:numberOfPages
10
n11:hasPublisher
Česká technika - nakladatelství ČVUT
n17:isbn
978-80-01-05379-9
n19:organizacniJednotka
21340