This HTML5 document contains 37 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n12http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F68407700%3A21230%2F13%3A00208840%21RIV14-MSM-21230___/
n9http://localhost/temp/predkladatel/
n15http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n10http://linked.opendata.cz/resource/domain/vavai/projekt/
n6http://linked.opendata.cz/resource/domain/vavai/subjekt/
n5http://linked.opendata.cz/ontology/domain/vavai/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n11http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n17http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n13http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n7http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n18http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n14http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n16http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F68407700%3A21230%2F13%3A00208840%21RIV14-MSM-21230___
rdf:type
skos:Concept n5:Vysledek
dcterms:description
This is an extended abstract about roster evaluation based on the classifiers for the nurse rostering problem which is a well-known combinatorial problem. Various heuristics dealing with this problem can be found in the literature. However, they have to evaluate many intermediate rosters which is very time consuming process. In our paper, we propose a faster roster evaluation using the pattern recognition to determine how much good or bad the rosters are. The experimental results show a significant algorithm runtime reduction in comparison with standard evaluation. This is an extended abstract about roster evaluation based on the classifiers for the nurse rostering problem which is a well-known combinatorial problem. Various heuristics dealing with this problem can be found in the literature. However, they have to evaluate many intermediate rosters which is very time consuming process. In our paper, we propose a faster roster evaluation using the pattern recognition to determine how much good or bad the rosters are. The experimental results show a significant algorithm runtime reduction in comparison with standard evaluation.
dcterms:title
Roster Evaluation Based on the Classifiers for the Nurse Rostering Problem Roster Evaluation Based on the Classifiers for the Nurse Rostering Problem
skos:prefLabel
Roster Evaluation Based on the Classifiers for the Nurse Rostering Problem Roster Evaluation Based on the Classifiers for the Nurse Rostering Problem
skos:notation
RIV/68407700:21230/13:00208840!RIV14-MSM-21230___
n5:predkladatel
n6:orjk%3A21230
n3:aktivita
n7:P
n3:aktivity
P(7H12008)
n3:dodaniDat
n16:2014
n3:domaciTvurceVysledku
n15:5834805 n15:7678436 n15:7041330
n3:druhVysledku
n14:O
n3:duvernostUdaju
n17:S
n3:entitaPredkladatele
n12:predkladatel
n3:idSjednocenehoVysledku
103484
n3:idVysledku
RIV/68407700:21230/13:00208840
n3:jazykVysledku
n13:eng
n3:klicovaSlova
nurse rostering problem; pattern learning; neural network; adaptive boosting
n3:klicoveSlovo
n11:nurse%20rostering%20problem n11:adaptive%20boosting n11:neural%20network n11:pattern%20learning
n3:kontrolniKodProRIV
[59E90083BD7B]
n3:obor
n18:JC
n3:pocetDomacichTvurcuVysledku
3
n3:pocetTvurcuVysledku
3
n3:projekt
n10:7H12008
n3:rokUplatneniVysledku
n16:2013
n3:tvurceVysledku
Šůcha, Přemysl Václavík, Roman Hanzálek, Zdeněk
n9:organizacniJednotka
21230